S.chand publication New Learning Composite mathematics solution of class 7 Chapter 14 Perimeter and Area Exercise 14F

 Exercise 14F

Question 1

(a) {3.14×(10)2} cm2

={3.14×100} cm2

=314 cm2

(b) {3.14×(5)2} cm2

={3.14×25}cm2

=78.50cm2

(c) {3.14×(20)2} cm2

={3.14×400} cm2

=1256 cm2

(d) {3.14×(25)2} cm2

={3.14×625} cm2

=1962.50 cm2


Question 2

(a) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2

$=\left(\frac{1}{4} \times \frac{22}{7} \times 28 \times 28\right)$ cm2

=616 cm2

(b) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2

$=\left\{\frac{1}{4}\times \frac{22}{7} \times 313600 \right}$ cm2

=246400 cm2

(c) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2

$=\left\{\frac{1}{4}\times \frac{22}{7} \times (8.4)^2\right\}$ cm2

=55.44 cm2

(d) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2

$=\left\{\frac{1}{4} \times \frac{22}{7} \times 4.41\right\}$ cm2

=3.465 cm2


Question 3

(a)

πr2=113.04

$r^2=\frac{113.04}{3.14}$

r2=36

r=√36

∴r=6


(b)

πr2=3.14

3.14×r2=3.14

$r^2=\frac{3.14}{3.14}$

r2=1

r=1


(c) 

πr2=28.26

3.14×r2=28.26

$r^2=\frac{28.26}{9.14}$

r2=9

r=3

Question 4

The area of the region$=\left\{\frac{22}{7} \times (77)^2\right\}$ km2

$=\left(\frac{22}{7} \times 77 \times 77\right)$ km2

=18634  km2


Question 5

Area of the shaded portion$=\left\{\frac{1}{4} \times \frac{22}{7} \times (7)^2\right\}$ cm2

$=\left\{\frac{1}{4} \times \frac{22}{7} \times 7 \times 7\right\}$ cm2

=38.5 cm2


Question 6

(a)

Area of the smaller circle$=\left\{\frac{22}{7} \times (7)^2\right\}$ cm2

$=\frac{22}{7} \times 7\times 7$ cm2

=154 cm2

Area of the larger circle$=\left\{\frac{22}{7} \times (14)^2\right\}$ cm2

$=\left(\frac{22}{7} \times 14 \times 14\right)$ cm2

=616 cm2

∴Area of the shaded portion=(616-154)=462 cm2


(b)

Area of the triangle$=\left(\frac{1}{2}\times 16 \times 12\right)$ cm2

=96 cm2

Area of the shaded portion=(314-96)=218 cm2


(c)

Area of one circle$=\left\{\frac{1}{4} \times 3.14 \times 8^2\right\}$ m2

$=\frac{1}{4} \times 3.14 \times 8 \times 8$ m2

=50.24 m2

Area of two circle=(2×50.24)=100.48 m2

∴Area of the rectangle=(82+82)m2

=(64+64)m2

=128 m2

∴Area of shaded portion=(128-100.48) m2

=27.52 m2

Area of the larger semi-circle$=\left\{\dfrac{\frac{1}{4}\times \frac{22}{7} \times (14)^2}{2}\right\}$ cm2

$=\dfrac{\frac{1}{4} \times \frac{22}{7} \times 14 \times 14}{2}$ cm2

$=\left\{\frac{154}{2}\right}$ cm2

=77 cm2

Area of the smaller semi-circle$=\dfrac{\frac{1}{4}\times \frac{22}{7} \times (7)^2}{2}$ cm2

$=\dfrac{\frac{1}{4} \times \frac{22}{7} \times 7 \times 7}{2}$ cm2

$=\frac{38.5}{2}$ cm2

=19.25  cm2

∴Area of the shaded portion=(77-19.25) cm2

=57.75  cm2


Question 7

Figure to be added

The combined area of two circle is 308 cm2

The area of one circle$=\frac{308}{2}$ cm2

Let, radius of circle r=154 cm2

ATQ,

$\frac{22}{7} \times r^2=154$

$r^2=154\times \frac{7}{22}$

r2=49
∴r=7

∴Diameter of the circle=(7×2)=14 cm

∴Perimeter of the circle={14+(14+14)} cm

=(14+28) cm

=84 cm


Question 8

Figure to be added

Area of the circular card sheet$=\left\{\frac{22}{7} \times (14)^2\right\}$ cm2

$=\frac{22}{7} \times 14 \times 14$ cm2

=616 cm2

Area of the two small circles$=2\times \frac{22}{7} \times 3.5 \times 3.5$ cm2

=2×38.5 cm2

=77 cm2

Area of the rectangle=(3×1) cm

=3 cm

∴Area of the remaining portion=616-(77+3) cm2

=(616-80) cm2

=536  cm2


Question 9

Let, the radius of the circle be r

ATQ,

$2\times \frac{22}{7} \times r=88$

$r=\frac{88}{2} \times \frac{7}{22}$

∴r=14

∴Area of the circle$=\left(\frac{22}{7}\times 14 \times 14\right)$ cm2

=616 cm2

If the same piece of wire is bent into the shape of a square 

Let the one side of the square be a

4a=88

$a=\frac{88}{4}$

∴a=22

∴Area of the square=(22)2 cm2

=484 cm2

Ans : Circle have more area


Question 10

∴Area of the field that the cow can graze$=\left(\frac{1}{4} \times \frac{22}{7} \times (14)^2 \right)$ m2

$=\left(\frac{1}{4} \times \frac{22}{7} \times 14 \times 14\right)$ m2

=154 m2

1 comment:

Contact Form

Name

Email *

Message *