Exercise 14F
Question 1
(a) {3.14×(10)2} cm2
={3.14×100} cm2
=314 cm2
(b) {3.14×(5)2} cm2
={3.14×25}cm2
=78.50cm2
(c) {3.14×(20)2} cm2
={3.14×400} cm2
=1256 cm2
(d) {3.14×(25)2} cm2
={3.14×625} cm2
=1962.50 cm2
Question 2
(a) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2
$=\left(\frac{1}{4} \times \frac{22}{7} \times 28 \times 28\right)$ cm2
=616 cm2
(b) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2
$=\left\{\frac{1}{4}\times \frac{22}{7} \times 313600 \right}$ cm2
=246400 cm2
(c) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2
$=\left\{\frac{1}{4}\times \frac{22}{7} \times (8.4)^2\right\}$ cm2
=55.44 cm2
(d) $\left\{\frac{1}{4} \pi (28)^2\right\}$ cm2
$=\left\{\frac{1}{4} \times \frac{22}{7} \times 4.41\right\}$ cm2
=3.465 cm2
Question 3
(a)
πr2=113.04
$r^2=\frac{113.04}{3.14}$
r2=36
r=√36
∴r=6
(b)
πr2=3.14
3.14×r2=3.14
$r^2=\frac{3.14}{3.14}$
r2=1
r=1
(c)
πr2=28.26
3.14×r2=28.26
$r^2=\frac{28.26}{9.14}$
Question 4
The area of the region$=\left\{\frac{22}{7} \times (77)^2\right\}$ km2
$=\left(\frac{22}{7} \times 77 \times 77\right)$ km2
=18634 km2
Question 5
Area of the shaded portion$=\left\{\frac{1}{4} \times \frac{22}{7} \times (7)^2\right\}$ cm2
$=\left\{\frac{1}{4} \times \frac{22}{7} \times 7 \times 7\right\}$ cm2
=38.5 cm2
Question 6
(a)
Area of the smaller circle$=\left\{\frac{22}{7} \times (7)^2\right\}$ cm2
$=\frac{22}{7} \times 7\times 7$ cm2
=154 cm2
Area of the larger circle$=\left\{\frac{22}{7} \times (14)^2\right\}$ cm2
$=\left(\frac{22}{7} \times 14 \times 14\right)$ cm2
=616 cm2
∴Area of the shaded portion=(616-154)=462 cm2
(b)
Area of the triangle$=\left(\frac{1}{2}\times 16 \times 12\right)$ cm2
=96 cm2
Area of the shaded portion=(314-96)=218 cm2
(c)
Area of one circle$=\left\{\frac{1}{4} \times 3.14 \times 8^2\right\}$ m2
$=\frac{1}{4} \times 3.14 \times 8 \times 8$ m2
=50.24 m2
Area of two circle=(2×50.24)=100.48 m2
∴Area of the rectangle=(82+82)m2
=(64+64)m2
=128 m2
∴Area of shaded portion=(128-100.48) m2
=27.52 m2
Area of the larger semi-circle$=\left\{\dfrac{\frac{1}{4}\times \frac{22}{7} \times (14)^2}{2}\right\}$ cm2
$=\dfrac{\frac{1}{4} \times \frac{22}{7} \times 14 \times 14}{2}$ cm2
$=\left\{\frac{154}{2}\right}$ cm2
=77 cm2
Area of the smaller semi-circle$=\dfrac{\frac{1}{4}\times \frac{22}{7} \times (7)^2}{2}$ cm2
$=\dfrac{\frac{1}{4} \times \frac{22}{7} \times 7 \times 7}{2}$ cm2
$=\frac{38.5}{2}$ cm2
=19.25 cm2
∴Area of the shaded portion=(77-19.25) cm2
=57.75 cm2
Question 7
Figure to be added
The combined area of two circle is 308 cm2
The area of one circle$=\frac{308}{2}$ cm2
Let, radius of circle r=154 cm2
ATQ,$\frac{22}{7} \times r^2=154$
$r^2=154\times \frac{7}{22}$
r2=49
∴Diameter of the circle=(7×2)=14 cm
∴Perimeter of the circle={14+(14+14)} cm
=(14+28) cm
=84 cm
Question 8
Figure to be added
Area of the circular card sheet$=\left\{\frac{22}{7} \times (14)^2\right\}$ cm2
$=\frac{22}{7} \times 14 \times 14$ cm2
=616 cm2
Area of the two small circles$=2\times \frac{22}{7} \times 3.5 \times 3.5$ cm2
=2×38.5 cm2
=77 cm2
Area of the rectangle=(3×1) cm
=3 cm
∴Area of the remaining portion=616-(77+3) cm2
=(616-80) cm2
=536 cm2
Question 9
Let, the radius of the circle be r
ATQ,
$2\times \frac{22}{7} \times r=88$
$r=\frac{88}{2} \times \frac{7}{22}$
∴r=14
∴Area of the circle$=\left(\frac{22}{7}\times 14 \times 14\right)$ cm2
=616 cm2
If the same piece of wire is bent into the shape of a square
Let the one side of the square be a
4a=88
$a=\frac{88}{4}$
∴a=22
∴Area of the square=(22)2 cm2
=484 cm2
Ans : Circle have more area
Question 10
∴Area of the field that the cow can graze$=\left(\frac{1}{4} \times \frac{22}{7} \times (14)^2 \right)$ m2
$=\left(\frac{1}{4} \times \frac{22}{7} \times 14 \times 14\right)$ m2
=154 m2
Nice I also want this
ReplyDelete