Exercise 14F
Question 1
(a) {3.14×(10)2} cm2
={3.14×100} cm2
=314 cm2
(b) {3.14×(5)2} cm2
={3.14×25}cm2
=78.50cm2
(c) {3.14×(20)2} cm2
={3.14×400} cm2
=1256 cm2
(d) {3.14×(25)2} cm2
={3.14×625} cm2
=1962.50 cm2
Question 2
(a) {14π(28)2} cm2
=(14×227×28×28) cm2
=616 cm2
(b) {14π(28)2} cm2
=\left\{\frac{1}{4}\times \frac{22}{7} \times 313600 \right} cm2
=246400 cm2
(c) {14π(28)2} cm2
={14×227×(8.4)2} cm2
=55.44 cm2
(d) {14π(28)2} cm2
={14×227×4.41} cm2
=3.465 cm2
Question 3
(a)
πr2=113.04
r2=113.043.14
r2=36
r=√36
∴r=6
(b)
πr2=3.14
3.14×r2=3.14
r2=3.143.14
r2=1
r=1
(c)
πr2=28.26
3.14×r2=28.26
r2=28.269.14
Question 4
The area of the region={227×(77)2} km2
=(227×77×77) km2
=18634 km2
Question 5
Area of the shaded portion={14×227×(7)2} cm2
={14×227×7×7} cm2
=38.5 cm2
Question 6
(a)
Area of the smaller circle={227×(7)2} cm2
=227×7×7 cm2
=154 cm2
Area of the larger circle={227×(14)2} cm2
=(227×14×14) cm2
=616 cm2
∴Area of the shaded portion=(616-154)=462 cm2
(b)
Area of the triangle=(12×16×12) cm2
=96 cm2
Area of the shaded portion=(314-96)=218 cm2
(c)
Area of one circle={14×3.14×82} m2
=14×3.14×8×8 m2
=50.24 m2
Area of two circle=(2×50.24)=100.48 m2
∴Area of the rectangle=(82+82)m2
=(64+64)m2
=128 m2
∴Area of shaded portion=(128-100.48) m2
=27.52 m2
Area of the larger semi-circle={14×227×(14)22} cm2
=14×227×14×142 cm2
=\left\{\frac{154}{2}\right} cm2
=77 cm2
Area of the smaller semi-circle=14×227×(7)22 cm2
=14×227×7×72 cm2
=38.52 cm2
=19.25 cm2
∴Area of the shaded portion=(77-19.25) cm2
=57.75 cm2
Question 7
Figure to be added
The combined area of two circle is 308 cm2
The area of one circle=3082 cm2
Let, radius of circle r=154 cm2
ATQ,227×r2=154
r2=154×722
r2=49
∴Diameter of the circle=(7×2)=14 cm
∴Perimeter of the circle={14+(14+14)} cm
=(14+28) cm
=84 cm
Question 8
Figure to be added
Area of the circular card sheet={227×(14)2} cm2
=227×14×14 cm2
=616 cm2
Area of the two small circles=2×227×3.5×3.5 cm2
=2×38.5 cm2
=77 cm2
Area of the rectangle=(3×1) cm
=3 cm
∴Area of the remaining portion=616-(77+3) cm2
=(616-80) cm2
=536 cm2
Question 9
Let, the radius of the circle be r
ATQ,
2×227×r=88
r=882×722
∴r=14
∴Area of the circle=(227×14×14) cm2
=616 cm2
If the same piece of wire is bent into the shape of a square
Let the one side of the square be a
4a=88
a=884
∴a=22
∴Area of the square=(22)2 cm2
=484 cm2
Ans : Circle have more area
Question 10
∴Area of the field that the cow can graze=(14×227×(14)2) m2
=(14×227×14×14) m2
=154 m2
Nice I also want this
ReplyDelete