Exercise 14D
Question 1
Complete the table for a triangle. All measurement are in centimetres
(a) | (b) | (c) | (d) | (e) | (f) | (g) | |
---|---|---|---|---|---|---|---|
Base | 6 | 10 | 7 | 8 | 12 | 13 | 18 |
Height | 4 | 68 | 4 | 10 | 9 | 9 | 15 |
Area | 12 | 34 | 14 | 40 | 54 | 58.5 | 135 |
Question 2
Find in square metres the area of a triangle whose
(a) base=8 cm, altitude=6 cm
Area of the triangle$=\left(\frac{1}{2}\times 8 \times 6\right)$ sq cm
=24 sq cm
=0.0024 sq m
(b) base=38000 mm, altitude=4500 mm
Area of the triangle$=\frac{1}{2} \times 38000 \times 4500$ sq mm
=85500000
=85.5 sq m
Question 3
Find the area of shaded portion of each of the following figures (measure in cm)
(a) Figure to be added
Area of ▭EBCD=(18×25)cm2
=450
In ΔAED, AE=(30-25)cm
=5
ED=18 cm
∴Area of ΔAED$=\left(\frac{1}{2} \times 5 \times 18\right)$cm2
=45 cm2
∴Area of the shaded figure=(450+45) cm2
=495 cm2
(b) Figure to be added
=45
∴Area of ▭ACDF=(15×11)sq cm
=165
∴Area of ΔACDF$=\left(\frac{1}{6} \times 6 \times 15\right)$ sq cm
(c) Figure to be added
In ▭AFGE, AE=FG=11 cm
AF=EG=9 cm
∴Area of ▭AFGE=(11×9)cm2
=99 cm2
In ΔFBC, $FC=\frac{11}{2}$ cm
FB=(15-9)cm
=6 cm
∴Area of ΔFBC$=\left(\frac{1}{2} \times \frac{11}{2} \times 6\right)$ cm2
=16.5 cm2
In ΔCDG, $CG=\frac{11}{2}$ cm
GD=(15-9)=6 cm
∴Area of ΔCDG, $CG=\frac{11}{2}$ cm
GD=(15-9) cm
=6 cm
∴Area of ΔCDG$=\left(\frac{1}{2} \times \frac{11}{2} \times 6\right)$ cm2
=16.5
∴Area of the shaded figure=(99+16.5+16.5) cm2
=132
(d) Figure to be added
∴Area of ΔABC$=\left(\frac{1}{2} \times 10 \times 15\right)$ cm2
=75
∴Area of ΔCDE$=\left(\frac{1}{2} \times 10 \times 15\right)$ cm2
=75 cm2
(e) Figure to be added
In ΔABC, AC=(6+6+6) cm
=18 cm
altitude= 10 cm
∴Area of ΔABC$=\left(\frac{1}{2} \times 18 \times 10\right)$ cm2
=90 cm2
Area of ▭DEFG=(28×6) cm2
=168
∴Area of shaded figure=(90+168) cm2
=258
(f) Figure to be added
In ΔABF, AB=(16-2.5) cm
=13.5 cm
BF=(13-5)=8 cm
∴Area of ΔABF$=\left(\frac{1}{2} \times 8 \times 13.5\right)$ cm2
=54
∴Area of shaded figure=(54+32.5) cm2
=86.5 cm2
Question 4
The area of a triangle is equal ti that of a square of side length 40 cm. Find the side of the triangle whose corresponding altitude is 64 cm
Side of the square=40 cm
Area of the square=(40)2 cm2
Let, side of the triangle be b
ATQ,
$\frac{1}{2} \times b \times 64=1600$
$b=\frac{1600 \times 2}{64}$
∴b=50
Ans : Side of the triangle is 50 cm
Question 5
A rectangular field is 28 m long and 18 m wide. How many triangular flower beds each base 7m and altitude 6m can be laid in the field?
∴Area of the rectangular field=(28×18) m2
=504 m2
∴Area of the triangle$=\left(\frac{1}{2} \times 7 \times 6\right)$ m2
=21 m2
∴Number of triangular flowerbeds can be laid in the field$=\frac{504}{21}=24$
Ans : 24 triangular flowerbeds can be laid in the field
No comments:
Post a Comment