Exercise 5B
Question 1
Find the product of the following pairs of monomials.
(a) 5, 2x
Sol :
=5×2x=10
(b) -3y, 4y
Sol :
=-12y2
(c) -6p, -8pqr
Sol :
=-6p×8pqr=48p2qr
(d) 12p5, -5p
Sol :
=12p5×-5p=-60p6
Question 2
Find the area of a rectangle whose length is 6x3y2 units and breadth is 3xy2 units.
Sol :Breadth of rectangle=3xy2
∴Area of rectangle=Length×Breadth
Question 3
Simplify:
(a) (3y3 ) (-3y2)
Sol : -9y5
(b) (-8x5) (2x)
Sol : -16x6
(c) (-4m2n) (-3mn2)
Sol : +12m3n3
(d) (x4) (x3) (x)
Sol : x8
(e) (-4a) (5ab) (3b)
Sol : -60a2b2
(f) (-x3y2) (xy) (2y)
Sol : -2x4y4
(g) (-1/3 a3) (9a) (-2a4)
Sol : 6a8
(h) (-q)3 (2q)2
Sol : -4q5
(i) (2x)2 (3x)3
Sol : 108x5
(j) (-4z) (-5z2)3
Sol : 500z7
(k) (-3y)2 (-3y)3
Sol : -243y5
(l) (-0.5a2b) (-2ab)3
Sol : 4a5b4
Question 4
Find a monomial equivalent to the given expression.
(a) ( 4a3b2) (3a3b4) + (2ab)6
Sol :
=12a6b6+64a6b6
=76a6b6
(b) (4x3) (2x)4 – (7x)2 (3x5)
Sol :
=64x7-147x7
=-83x7
(c) (5p2) (-2q) (3q) + (7p2) (2q2) + (-3p) (-5p) (4q2)
Sol :
=-30p2q2+14p2q2+60p2q2
=44p2q2
(d) (- 3xyz) (4x2yz) – (5y2) (2xz2) (-x2)
Sol :
=-12x3y2z2+10x3y2z2
=-2x3y2z2
No comments:
Post a Comment