S.chand publication New Learning Composite mathematics solution of class 8 Chapter 12 Mensuration Exercise 12B

 Exercise 12B

Find area of the following polygons


Q1 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper


Question 1

ΔABE-

Area1=12×12×30

=180cm2


Area2=12h(a+b)

=12×15×(30+24)

=405cm2

Total area=Area1+Area2

=180+405=585cm2



Q2 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper

Question 2

Sol :










ΔPQU-

Area1=12×40×15

=300 cm2


In rectangle QRTU

Area2=40×28=1120cm2


In ΔRST-

Area3=12×40×15

=300cm2

∴Total area=Area1+Area2+Area3

=300+1120+300=1720cm2



Q3 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper

Question 3

Sol :







ABCDEF is a hexagonal figure.

∴A regular hexagon can be divided into a equilateral triangle

∴Area of ABCDEF=6×Area of one triangle

=6×[34×(sides)2]

=6[34×82]

=6×34×8×8

=6×1.732×2×8

=166.272m2



Q4 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper

Question 4

Sol :






EI=5cm ,HI=8cm

EF=6cm ,GH=3cm

Join O and G 

OG=8cm=IH

IOGH is a rectangle

∴EFGO is a trapezium

∴Area of IEFGH=Area of IOGH+Area of EFGO

=(8×3)+12×(6+8)×2

=24+12×14×2

=24+14

=38 cm2



Q5 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper

Question 5

Sol :





ΔRSV-

Area1=12×Base×Height

=12×8×10

=40cm2

Trapezium STUV-

Area1=12×h×(8+14)

[∵RO=10

RP=17

∴OP=h=17-10=7cm]

=12×7×22

=77

∴Area=Area1+Area1

=40+77=117cm2



Q6 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper

Question 6

Sol :






Let ,ABCP is a rectangle

∴A1=(4×10)=40cm2

Let, 

EFQD is a rectangle

∴A2=(9×8)=72cm2

PC and QD join "O"
∴POQG is a rectangle
∴PO=GQ=15-8=7cm
PG=27-10=17cm
∴Area=7×17=119cm2

Now , ΔODC➝

OD=27-(10+9)=27-19=8cm

OC=PO-PC=7-4=3cm

∴Area=12×8×3=12


∴Area of PCDQG➝

A3=119-12=107cm2

∴Total Area=A1+A2+A3

=40+72+107

=219cm2



Q7 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper

Question 7

Find the area of the hexagon ABCDFF in two ways:

(a) By splitting into two congruent triangles and a rectangle.

(b) By splitting into two congruent trapeziums.

Sol :






(a)

⇒ABCDEF is a hexagon, by splitting into two congruent by BF and CE

∴BCEF is rectangle

ABF ,DCE are triangle

ABF , DCE are triangle


∴Area of BCEF=A1=(7×10)=70cm2

Area of ABF=A2==12×10×4=20cm2

ΔABF=ΔDCF=20

∴Total area of ABCDEF=70+20+20=110cm2


(b) 

ABCDEF is hexagon splitting by AD into two congruent trapezium

ABCD and ADEF are trapezium 

∴Area of ABCD=A1=12h(a+b)

[h=OC=102=5

a=7 , b=15]

=125(7+15)

=12×5×22

=55cm2

∴Area of ABCD=Area of ADEF=55cm2

∴Total area of ABCDEF=55+55=110cm2



Q8 | Ex-12B |Class 8 |Mensuration | S.Chand | New Learning | Composite mathematics | myhelper

Question 8

The perimeter of a square and a rectangle hexagon are equal. Find the ratio of the area of the hexagon to the area of the square.

Sol :

Perimeter of a square=4a

Perimeter of a regular hexagon=6b

ATQ,

4a=6b

ab=64

b=4a6


Now,

Area of hexagon : Area of square

=6×34×b2 : a2

=6×34×4a6×4a6a2

=233

=2√3:3

2 comments:

Contact Form

Name

Email *

Message *