S.chand publication New Learning Composite mathematics solution of class 8 Chapter 10 Quadrilaterals Exercise 10D

 Exercise 10D


Q1 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 1

Find the measures of the numbered angles in each rectangle.

(a)








∠ABD=58°

∵AB⊥BC

DC⊥BC

AB=DC , AD=BC

AB||DC , AD||DC

∴∠ABC=90°

∴∠DBC=∠4=90°-58°=32°

∠DCB=∠3=90°=∠BAD

∴∠BAD=∠5=90°

∠ABC=∠ADC=90°

∴∠BDA=∠1=∠DBC=32°

Again, ∠ABD=∠BDC=∠2=58°


∴∠1=32°  ,∠3=90°

∠2=58° ,∠4=32°

∠5=90°


(b)





∵AD=DC=BC=AB

∠ADC=∠ABC=∠BAD=∠DCB=90°

∴∠1=∠ABC=90°

AC and BD bisect each other at O

∴∠ABD=∠DBC$=\frac{90}{2}$=45°

∴∠4=∠BDC=45°

∠BCA=∠5$=\frac{90}{2}$=45°


∴∠3=∠DAC=∠BCA=45°

∴∠CAB=∠2=45°

∴∠1=90° ,∠2=45° ,∠3=45° ,∠4=45°,∠5=45°



Q2 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 2

In rectangle PQRS , S R=20 cm and PR=35 cm. Find:

(a) PQ  

(b) SK

PQRS is rectangle

SR=20 , PR=35

(a) PQ=20=SR  [∵SR=PS]


(b) ∵PR=SQ=35 [∵SR and PQ bisect each other at O]

∴$SQ=\frac{1}{2}$SK$=\frac{35}{2}$=17.5cm



Q3 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 3

Find the value of each variable in these rectangles. Give brief reasons.

Sol :





(a) 

∵ABCD is a rectangle

∴AD=BC=x=7

AB=DC=y=4

∠a=90°=∠c  [∵AD⊥DC]

∠b=90°=∠d  [BC⊥DC]







(b)

AB=DC

AD=BC

∠BCD=90°

∴∠BCA=55°

∴∠ACD=90°-55°=35°

∴AD||BC and AB||DC

∴∠ACD=∠CAB=35°=y

∴x=∠DAC=∠BCA=55°

∴x=55°

and y=35°








(c) 

∵ABCD is rectangle

∴AB=DC  ∴AB⊥AD

AD=BC   DC⊥AD

∴∠ADC=5x=90°

∴$x=\frac{90}{5}$=18°

∴∠ADC=18°×5=90°


Now , 5y=15

∴$y=\frac{15}{5}=3$


∴AD=5×3=15

x=18 and y=3







(d)

AC and BD are bisect each other at "O"point

∴AC=BD

AD=BC   [AD||BC]

AB=DC  [AB||DC]

∴a=b=c=7unit



Q4 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 4

Find the value of each variable in these rhombuses. Give brief reasons.

Sol :







(a)

ABCD is rhombus

∴AB||DC
AD||BC

∴AB=DC=AD=BC=x=9

AC and BD are intersection at the point "O"

∴AC=BD

∴AC⊥OD

AC⊥OB

∴∠BOC=a=∠AOB=90°

∴a=90° , x=9 unit ,y=9 unit






(b)

∵ABCD is rhombus

∴AD||BC

AB||DC

∴AD=BC , AB=DC

∴∠a=∠c=x

∠A=∠d=105°


In quadrilateral ABCD

∠A+∠a+∠c+∠d=360°

105°+x+x+105°=360°

210°+2x=360°

2x=360°-210°

$x=\dfrac{150^{\circ}}{2}$

x=75°







(c)

ABCD is rhombus

∵AC and BO are intersecting at point "O"

∴AO=OC=x=4

∴BO=OD=y=6








(d)

∠a=∠b=∠c=d

ΔABC

$2a+c+\frac{a}{2}=180^{\circ}$

$2a+\frac{a}{2}+\frac{a}{2}=180^{\circ}$  

[∵AB=BC

∴∠BAC=∠BCA

∴$\frac{a}{2}=C$]

$2a+\frac{2a}{2}=180^{\circ}$

3a=180°

$a=\frac{180}{3}$=60°



Q5 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 5

In the rhombus ABCD, find







(a) BC

∵ABCD is a rhombus

∴AB=BC=AD=DC=4a+5=15a-6

∴We know

4a+5=15a-6

11a=11

a=1

∴BC=4a+5=4×1+5=9


(b) ∠BCO

AC and BD are intersecting at point "O"

∴∠BOC=90°

∴11b+2=90°

11b=90°-2°=88°

$b=\frac{88}{11}$=8


∴∠ACD=4b-10

=(4×8-10)

=32-10=22


∠ACD=∠BCO (Diagonals of rhombus bisect interior angles)



Q6 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 6

Find the measures of the numbered angles in each rhombus.

(a)








Sol :

∠5=28° (Diagonals of rhombus bisect interior angle)

∠2=∠5=28° (alternate interior angle)

∠3=28° (alternate interior angle)


In triangle 

∠1+∠2+28°=180° (Angle sum property of triangle)

∠1+28°+28°=180°

∠1+28°+28°=180°

∠1+56°=180°

∠1=180°-56°=124°

∠1=∠4 (Opposite angle of rhombus are equal)


(b)






Sol :

∠A=50°, ∠B=∠2+∠3, ∠C=∠4, ∠D=∠1+∠5

∠4=50°...(i) (Opposite angle of rhombus are equal) 

∠B=∠D...(ii) (Opposite angle of rhombus are equal) 


In quadrilateral ABCD,

∠A+∠B+∠C+∠D=360° (Angle sum property of quadrilateral)

50°+∠B+∠B+50°=360° from (i) and (ii)

2∠B=360°-100°

2∠B=260°

$\angle B=\dfrac{260^{\circ}}{2}$

B=130°

∠2=∠3 and ∠1=∠5 (Diagonals bisect interior angle)

∠B=∠2+∠3

∠B=∠2+∠2

∠B=130°

∠2+∠2=130°

2∠2=130°

$\angle 2=\dfrac{130^{\circ}}{2}$

∠2=65°

∴∠1=∠2=∠3=∠5=65°


(c)






Sol :

∠3=28° (alternate interior angle)

∠4=90° (Diagonals of rhombus is perpendicular bisectors)







In triangle AOB ,

∠OAB+∠AOB+∠ABO=180°

∠3+∠4+∠ABO=180°

28°+90°+∠ABO=180°

118°+∠ABO=180°

∠ABO=62°


∠ABO=∠OBD=62° (Diagonals of rhombus bisect interior angle)

∠2=∠5=ABO=∠1=62° (alternate interior angle)



Q7 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 7

Find the value of each variable in these squares. Give brief reasons.





(a)

ABCD is a square

∴AD=DC=BC=AB=x=y=6

∴∠BAD=∠ADC=∠DCB=∠CBA=a=b=c=d=90°

∴x=6 ,y=6   also, a=b=c=d=90°







(b)

AC and BD are intersect each other

AC=BD

∴∠BOC=90°

∴2p=90°

∴p=45°


Now ,ΔAOD

OD=OA [∴∠OAD=∠ODA=q]

∠AOD=90°

We know that

∠AOD+∠DOA+∠ODA=180°

90°+2q=180°

2q=180°-90°

2q=90°

$q=\frac{90}{2}$=45°







(c)

ABCD is square

AD=DC=BC=AB

AB and DC are intersecting at a point "O"

∴AO=OC=BO=OD=x=y=z=4

∴x=y=z=4







(d)

ABCD is square

∴AB=BC=DC=AD

∴∠ABC=∠BCD=∠CDA=∠DAB=90°

∴2x=90°

∴x=45°

∠CDA=90°

∠BDC$=\frac{1}{2}$∠CDA$=\frac{90}{2}=45$°=5y

∴5y=45°

y=9



Q8 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 8

One of the diagonals of a rhombus is equal to one of its sides. Find the angles of the rhombus.

Sol :






ABCD is rhombus

∴AC and BD are two diagonals

∴ Let , AC=x

AB=BC=CD=AD


ATQ ,

AB=x

∴ABC is equilateral triangle

ΔABC

AB=BC=AD

∠BAC=∠BCA=∠ABC=60°

∠B=60° , ∠A=60°×2=120° , ∠D=60° ,∠C=60°×2=120°



Q9 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 9

ABCD is a rectangle. E is he midpoint of AB. Prove that △DEC is an isosceles triangle.

Sol :






E is mid point of AB

∴AE=EB

DC=CE

ABCD is a rhombus

AD=BC

ΔDEC➝

DE=CE

∴ΔDEC is isosceles triangle



Q10 | Ex-10D | Class 8 | SChand New learning Composite Maths | Quadrilaterals | myhelper

OPEN IN YOUTUBE

Question 10

PQRS is a rhombus with diagonals PR which is extended to a point T. Prove that TQ = TS.

Sol :





PQRS is a rhombus

∴PQ=SR

PS=QR

∴In ΔTRS

SR2+TR2=TS2


In ΔTRS

RQ2+TR2=TQ2

SR2+TR2=TQ2


∴We can write

TS2=TQ2

or TS=TQ

No comments:

Post a Comment

Contact Form

Name

Email *

Message *