Exercise 1D
Question 1
State the property used by the following statements.
(a) −78×1115=1115×−78
Sol :
=−78×1115=−77120 , 1115×−78=−77120
−78×1115=1115×−78 (commutative property)
(b) 67×76=1
Sol :
(Multiplicative inverse)
(c) −18+18=0
Sol :
(Additive inverse)
(d) −2129+619=619+(−2129)
Sol :
⇒−2129+619=−399+126551=−273551
⇒619+(−2129)=126−399551=−273551
∴−2129+619=619+(−2129)
(commutative property)
(e) −2370×1=−2370
Sol :
⇒−2370×1=−2370 (multiplicative identity)
(f) 58(12−13)=58×12−58×13
Sol :
⇒58(12−13)=58(3−26) =58×16=548
⇒58×12−58×13=516−524=15−1048 =548
(distributive property)
(g) (12×13)×15=12×(13×15)
Sol :
⇒(12×13)×15=16×15=130
⇒12(13×15))=12×115=130
(Associative property)
Question 2
Verify the following and state the property used.
(a) 17135×15−51=15−51×17135
Sol :
⇒17135×15−51=1−27
⇒15−51×17135=−127
(commutative)
(b) 19(185+320)=19×185+19×(−320)
Sol :
⇒19(185+−320)=19(72−320)=19×6920=2360
⇒19×185+19×(−320)=25−160 =24−160=2360
distributive
(c) (−12+37)+(−43)=−12+[37+(−43)]
Sol :
⇒(−12+37)+(−43)=−12+37−43
=−21+18−5642=−5942
⇒−12+[37+(−43)]=−12+37−43
=−21+18−5642=−5942
(Associative property)
(d) (53×−45)×35=53×[(−45×35)]
Sol :
⇒(53×−45)×35=−2015×35=−45
⇒53×(−45×35)=53×−1225=−45
(Associative property)
(e) −1920×1=1×(−1920)=−1920
Sol :
(Commutative property)
also, 1 is multiplicative identity
(f) −1724×24−17=1
Sol :
(Multiplicative inverse)
(g) −23+0=0+(−23)=−23
Sol :
0 is additive identity
(h) 17+0=0+17=17
Sol :
0 is additive identity
Question 3
Taking, a = 47,b = −52 and c =43, show that
a÷(b÷c)≠(a÷b)÷c, that is not associative for rational numbers.
Sol :
a÷(b÷c)=47÷(−52÷43)
=47÷(−52×34)=47×8−15=32−105
(a÷b)÷c=[47÷(−52)]÷43
=(47×2−5)÷43=6−35×34=−635
∴a÷(b÷c)≠(a÷b)÷c
Question 4
Using distributivity, find 815×(−718)+(815×−1118)
Sol :
⇒815[−718+−1118]
=815×−1818=−815
Question 5
Find the additive inverse of each of the following.
(a) 516
(b) −15−16
(c) −819
(d) 20−23
Sol :
(a) =−516
(b) =−1516
(c) =819
(d) =+2023
Question 6
Write the multiplicative inverse of each of the following.
(a) -7
(b) 10
(c) 1741
(d) 28−59
(e) −29−36
(f) (13−14)×(−2)
(g) 58÷1516×(−32)
(h) 16 ÷ (-32)
Sol :
(a) =−17
(b) =110
(c) =4117
(d) =−5928
(e) =3629
(f) =(4−3120)×(−2)
=112×−2=−16=−6
(g) =58×1615×(−32)
=23×−32=-1
(h) =16×1−32=-2
No comments:
Post a Comment