S.chand publication New Learning Composite mathematics solution of class 7 Chapter 9 Pairs and Angles Exercise 9A

 Exercise 9A


Q1 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 1

What is measure of complement of 380

Sol : 90°-38°=52°



Q2 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 2

What is measure of supplement of 170°

Sol : 180°-170°=10°



Q3 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 3

Tell whether the angles shown below are complementary, supplementary or neither.














Sol : 

(a) Complementary

(b) Supplementary

(c) Neither 

(d) Neither



Q4 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 4

For each angle in group A, find its complement in group B. (Example 20° and 70°)

A: 20°, 10°, 35°, 45°, 60°, 85°, 65°

B: 25°, 45°, 30°, 5°, 70°, 80°, 55°

Sol :

20° and 70°

10° and 80°

35° and 55°

45° and 45°

60° and 30°

85° and 5°

65° and 25°




Q5 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 5

For each angle in group A, find its supplement in group B.

A: 140°, 70°, 179°, 165°, 55°, 45°, 80°

B: 100°, 15°, 125°, 110°, 1°, 40°, 135°

Sol :

140° and 40°

70° and 110°

179° and 1°

165° and 15°

55° and 125°

45° and 135°

80° and 100°



Q6 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 6

Two complementary angles are in the ratio 7:8, find the angles.

Sol :

Let, the angles be 7x and 8x

7x+8x=90

15x=90

$x=\frac{90}{15}$

∴x=6

Complementary angles are 42 and 48



Q7 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 7

Two supplementary angles are in the ratio 3:7, Find the angles.

Sol :

Let , the angles are 3x and 7x

3x+7x=180

10x=180

$x=\frac{180}{10}$

∴x=18

∴The angles are 54 and 126



Q8 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 8

Tell whether the angles are only adjacent, adjacent and form a linear pair or not adjacent.








(a) ∠1 and ∠4

Sol : Adjacent and form linear pair


(b) ∠2 and ∠3

Sol : Adjacent and form a linear pair


(c) ∠3 and ∠4

Sol : Only adjacent


(d) ∠3 and ∠1

Sol : Not adjacent 



Q9 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 9

Find the measures of the lettered angles.






(a) 90°






(b) 180°-108°=72°

∴P=72°





(c) 180°-39°=141°

∴x=141°









(d) 7b+2b=180°

9b=180°

$b=\frac{180^{\circ}}{9}$

b=20°

∴7b=(7×20)=140°

∴2b=(2×20)=40°





(e) 180°-(62°+53°)

=180°-115°

y=65°






(f) b+b+b=180°

3b=180°

$b=\frac{180^{\circ}}{3}$

∴b=60°







(g) 139°+d=180°

∴d=180°-139°=41°

c+49°=180°

∴c=180°-49°=131°






(h) f+32°=90°

∴f=90°-32°=58°

65°+g=90°

g=90°-65°=25°



Q10 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 10

Find  






(a) b, if a=110°

b=360°-110°=250°


(b) b, if $a=1\frac{1}{4}$ rt ∠s

$a=1\frac{1}{4} \times 90 ^{\circ}$

$=\frac{5}{4} \times 90^{\circ}$

=112.5°

∵a+b=360° (sum of angles around a point)

∴b=360°-112.5°=247.5°

$=\frac{11}{4}$ right angle

$=2\frac{3}{4}$ rt  ∠s


(c) a, if b=258°

a=360°-258°=102°


(d) b, if b-3a=40°

b-3a=40°

or b=40°+3a

b=360°-a

40°+3a=360°-a

3a+a=360°-40°

4a=320°

$a=\frac{320^{\circ}}{4}$

∴a=80°


∴b=360°-80°=280°



Q11 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 11

Find the values of a,b,c and d






(a) 

a=360°-(70°+60°)

=360°-130°=230°







(b) 

b=360°-(125°+59°+110°)

=360°-294°=66°








(c) 

4c+5c=180°

9c=180°

$c=\frac{180^{\circ}}{9}=20^{\circ}$

∴c=20°


4c=80°

5c=100°








(d)

3d+62°+62°+105°+47°=360°

3d=360°-(62°+62°+105°+47°)

3d=360°-276°

3d=84°

∴d=28°



Q12 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 12

Name the pairs of vertical angles








Sol :

∠3 and ∠6

∠2 and ∠5

∠1 and ∠4



Q13 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 13

How many pairs of vertical angles are in the diagram ?












Sol : 4



Q14 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 14

Find the values of each variable.







(a) a=60°







(b) ∠a=∠c$=\frac{360^{\circ}-(25^{\circ}+25^{\circ})}{2}$

$=\frac{360^{\circ}-50^{\circ}}{2}=\frac{310^{\circ}}{2}$

=155°







(c) y=x

2y+y=180°

3y=180°

$y=\frac{180^{\circ}}{3}$

∴y=60°







(d)

p+76°=180° (Linear Pair)

p=180°-76°=104°


∠p=∠r=104° (Vertically Opposite Angles )


4q=76° (Vertically Opposite Angles )

$q=\frac{76}{4}$

q=19°



Q15 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 15

In the diagram on the right, 1 = 50° and 2 = 84°, find the measures of 3, 4, 5 and 6.








Sol :

If ∠1 = 50° then, ∠4=50°

If ∠2 = 84° then ,∠5=84°

∴∠3+∠6=360°-(50°+50°+84°+84°)

=360°-268°=92°

∴∠3$=\frac{92^{\circ}}{2}$=46°

and ∠6=46°



Q16 | Ex-9A |Class 7 |S.Chand | New Learning Composite maths |Pairs and Angles |myhelper

Question 16

Find the angles in each of the following.

(a) The angles are supplementary and the larger is 20° less than 3 times the smaller.

Sol :

Let, the smaller angle be x

ATQ,

x+(3x-20°)=180°

4x-20°=180°

4x=180°+20°

$x=\frac{200^{\circ}}{4}=50^{\circ}$

∴The smaller angle=50°
∴The larger angle=(3×50°)-20
=150°-20°=130°

(b) The angles are complementary and the larger is 15° more than twice the smaller.

Sol :

Let , the smaller angle be x

ATQ,

x+(2x+15°)=90°

3x=90°-15°

3x=75°

$x=\frac{75}{3}=25$


∴The smaller angle=25°

The larger angle=(2×25°)+15°

=50°+15°=65°


(c) The angles are adjacent and form an angle of 120°. The larger is 20° less than 3 times the smaller.

Sol :

Let, the smaller angle be x

The larger angle be (3x-20°)

ATQ,

x+(3x-20°)=120°

4x=120°+20°

$x=\frac{140^{\circ}}{4}$

x=35°

∴The smaller angle=35°

The larger angle=(3×35°)-20°

=105°-20°=85°


(d) The angles are vertical and complementary.

Sol :

Let, the angle be x and y

ATQ,

x=y

∴x+y=90°

y+y=90°

2y=90°

y=45°

∴The vertical angles are 45° and 45°

No comments:

Post a Comment

Contact Form

Name

Email *

Message *