Exercise 5C
Question 1
Subtract
(a) 2x from 7x
Sol : 5x
(b) -5a from -2a
Sol : -2a-(-5a)
=3a
(c) 3b2 from -5b2
Sol :
=-8b2
(d) -2xy from 0
Sol :
=2xy
(e) -8cd from 8cd
Sol :
=8cd+8cd
=16cd
(f) 3(x + y) from 4(x + y)
Sol :
=4x+4y-3x-3y
=x+y
Question 2
Subtract the lower expression from the upper expression.
(a) (7a + 5) – (2a + 1)
Sol :
7a+52a+1−2a−15a+4
(b) (9x2 + 3y2) – (5x2 + y2)
Sol :
9x2+3y25x2+y2−5x2−y24x2+2y2(c) (5ab – 7bc) – (2ab + bc)
Sol :
5ab−7bc2ab+bc−2ab−bc3ab−8bc(d) (9x2y – 11) – (-2x2y – 5)
Sol :
9x2y−11+2x2y+511x2y−6(e) (2m3 – 9n2) – (4m3 – 11n2)
Sol :
2m3−9n24m3+11n2−2m3+2n2(f) (4x2y – 5xy2) – (4x2y – 5xy2)
Sol :
4x2y−5xy24x2y+5xy20Question 3
Arrange the following in columns and subtract.
(a) 7p + 2q + 5c from 9p + 4q + 7c
Sol :
9p+4q+7c7p+2q+5c−7p−2q−5c2p+2q+2c(b) 3x2 – 8xy – 9y2 from 3x2 – 8xy – 9y2
Sol :
3x2−8xy−9y23x2+8xy+9y2−3x2−8xy−9y20(c) 8x2 – 9x + 5 from 4x3 – 3x2 + 7x + 11
Sol :
4x3−3x2+7x+118x2+9x+5−8x2−9x−54x3−11x2+16x+6(d) -2p3 + 7p2 – 20 + 3p from 0
Sol :
=2p3-7p2+20-3p
(e) 4ax2 + 7bx – 9t + 6 from 8ax2 – 2bx + 10t -4
Sol :
8ax2−2bx+10x−44ax2+7bx+9x+6−4ax2−7bx−9x−64ax2−9bx+19x−10
Question 4
Subtract the following without writing in vertical form.
(a) 2x + 3y from 7x + 9y
Sol : 5x+6y
(b) -2x – y from 2x + y
Sol : 4x+2y
(c) – 5m2 + 4mn – n2 from 2m2 + 8mn + 3n2
Sol : 2m2 + 8mn + 3n2-(– 5m2 + 4mn – n2)
(d) – 2p3 + 4p2 – 7 – p from 16 – 8p
Sol : 16-8p+2p3–4p2+7+p
(e) 4xy – 3x2y + 7xy2 from 27 – 7xy2 + 11xy
Sol : 27 – 7xy2 + 11xy-(4xy – 3x2y + 7xy2)
=23-7p+2p3-4p2
(f) The sum of x2 – 2xy + y2 and x2 + 3xy + y2 from x2 – 6xy + 4y2
Sol :
=2x2+xy+2y2
∴x2-6xy+4y2-2x2-xy-2y2
=-x2-7xy+2y2
(g) The sum of 9b2 – 3c2 and 2b2 + bc – 2c2 from the sum of 2b2 – 2bc – c2 and c2 + 2bc – b2
Sol :
2b2 – 2bc – c2 and c2 + 2bc – b2-(9b2 – 3c2 and 2b2 + bc – 2c2)
=b2-(11b2-5c2+bc)
=b2-11b2+5c2-bc
=-10b2+5c2-bc
Question 5
Simplify:
(a) 3x2 – 5x + 7 – 5x2 – 11 + 8x + 20 + 9x2 – 6x
Sol :
=7x2-3x+16
(b) 5x3 – 8 + 7x2y – 7xy + 10xy2 + 11 – 2x3 – 5x2y + 9xy – 6xy2
Sol :
=3x3+3+2x2y+2xy+4xy2
Question 6
The area of a square 4x2 – 2xy – 6y2 square units. A triangle inside has an area of -5xy + 4y2 – 3x2 square units. Find the area of the shaded region.
Sol :
Area of shaded region=(4x2 – 2xy – 6y2+5xy-4y2+3x2) sq unit
=(7x2+3xy-10y2)
No comments:
Post a Comment