EXERCISE 2
Q1 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 1
Evaluate:
(i) 2-3
Sol :
Using property $a^{-n}=\dfrac{1}{a^n}$
⇒$\dfrac{1}{2^3}=\dfrac{1}{2}\times \dfrac{1}{2} \times \dfrac{1}{2}$
⇒$\dfrac{1}{2\times 2 \times 2}=\dfrac{1}{8}$
(ii) 60
Sol :
Using property: a0=1
⇒60=1
(iii) (-3)-2
Sol :
Using property $a^{-n}=\dfrac{1}{a^n}$
⇒$\dfrac{1}{(-3)^2}=\dfrac{1}{-3}\times \dfrac{1}{-3}$
⇒$\dfrac{1}{-3\times -3 }=\dfrac{1}{9}$
(iv) 85 . 8-5
Sol :
Using property am×an=a(m+n)
⇒85 . 8-5 or
⇒85 × 8-5
⇒8(5-5)
⇒80
⇒1
(v) $\dfrac{1}{2^{-2}}$
Sol :
Using property $\dfrac{1}{a}=a^{-1}$
⇒2(-2)×-1
⇒22
⇒4
(vi) 3(8-1)0
Sol :
Using property: a0=1
⇒3×1
⇒3
(vii) $\dfrac{1}{2^{-1}}+\dfrac{1}{3^{-1}}$
Sol :
Using property : $\dfrac{1}{a^{-1}}=a$
⇒2+3
⇒5
(viii) 7x0
Sol :
Using property: a0=1
⇒7×1
⇒7
(ix) a2 ÷ a-2
Sol :
Using property : $a^{-n}=\dfrac{1}{a^n}$
⇒$a^2 \div \dfrac{1}{a^2}$
⇒$a^2 \times \dfrac{a^2}{1}$
⇒a2×a2
Using property : an×am=a(n+m)
⇒a4
(x) $\dfrac{y^{-6}}{y^4}$
Sol :
Using property : $a^{-n}=\dfrac{1}{a}$
⇒$\dfrac{1}{(y^4)\times (y^6)}$
Using property: am×an=a(m+n)
⇒$\dfrac{1}{y^{(6+4)}}=\dfrac{1}{y^{(10)}}$ or
⇒y(-10)
(xi) (x -3)0
Sol :
Using property: (am)n=a(m×n)
⇒x0
⇒1
(xii) 60 + 6 -1 + 3 -1
Sol :
Using property: a0=1
⇒1+6 -1 + 3 -1
Using property: $a^{-1}=\dfrac{1}{a}$
⇒$1+\dfrac{1}{6}+\dfrac{1}{3}$
L.C.M of 6 and 3 is =2×3=6
$\begin{array}{l|l}
2&6,3 \\ \hline
3&3,3 \\ \hline
&1,1 \end{array}$
⇒$\dfrac{1\times 6+1\times 1+1\times 2}{6}=\dfrac{6+1+2}{6}$
or $\dfrac{9}{6}=\dfrac{3}{2}$
(xiii) $\dfrac{1}{a^0 + b^0}$
Sol :
Using property: a0=1
⇒$\dfrac{1}{1+ 1}=\dfrac{1}{2}$
(xiv) (3x2)3
Sol :
Using property: (an)m=a(m×n)
⇒ 3(3)× x(2×3)
⇒ 27× x6
⇒ 27x6
(xv) $\left[\left(\dfrac{5}{7}\right)^{-6}\right]^{-0}$
Sol :
Using property: (am)n=a(m×n)
⇒$\left(\dfrac{5}{7}\right)^{-6\times -0}$
⇒$\left(\dfrac{5}{7}\right)^0$
Using property : a0=1
⇒1
Q2 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 2
Simplify:
(i) x5 . x3
Sol :
Using property : am×an=a(m+n)
⇒x(5+3)
⇒x(8)
(ii) $\dfrac{x^8}{x^3}$
Sol :
Using property : $\dfrac{1}{a^n}=a^{-n}$
⇒x8 × x(-3)
Using property : am×an=a(m+n)
⇒x(8-3)
⇒x5
(iii) (x3)2
Sol :
Using property : am×an=a(m+n)
⇒x(3×2)
⇒x6
(iv) (3x2)3
Sol :
Using property : am×an=a(m+n)
⇒33×(x2)3
⇒27×x6
⇒27x6
(v) (5x-3yz2)-2
Sol :
Using property : $a^{-n}=\dfrac{1}{a^n}$
⇒$\dfrac{1}{(5x^{-3}yz^2)^2}$
⇒$\dfrac{1}{5^2 \times x^{-3\times 2}\times y^2 z^{2\times 2}}$
⇒$\dfrac{1}{25 \times x^{-6}\times y^2 \times z^{4}}$
⇒$\dfrac{x^6}{25y^2 z^{4}}$
Q3 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 3
Write the option that indicates the correct meaning of the given expression
(i) 4n3 means
(a) 4 times n + n + n
(b) 4n . 4n . 4n
(c) 4 . n . n . n
Sol :
⇒4n3
⇒4.n.n.n or (4×n×n×n)
Option (c) is correct
(ii) 6x3y2 means
(a) 6 . xy . xy . xy . xy . xy
(b) (6 . x. x. x . y)(7. x. x. x . y)
(c) 6 . x . x . x . y .y
Sol :
Option (c) is correct
Q4 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 4
Simplify:
(i) $\dfrac{(a^0b^{-2})^5}{2a^{-1}}$
Sol :
⇒$\dfrac{(a^{0\times 5}b^{-2\times 5})}{2a^{-1}}$
⇒$\dfrac{(a^{0}b^{-10})}{2a^{-1}}$
Using property: $\dfrac{1}{a^{-1}}=a$
⇒$\dfrac{a^0 \times a^1}{2b^{10}}$
Using property: a0=1
⇒$\dfrac{a^1}{2b^{10}}$
(ii) $\dfrac{4a^{-3}b^{0}}{2a^{2}b^{-1}}$
Sol :
⇒$\dfrac{\not{4}a^{-3}b^{0}}{\not{2}a^{2}b^{-1}}$
Using property: $\dfrac{1}{a}=a^{-1}$
⇒2a-3×b0× a-2 × b+1
Using property: an×am=a(m+n)
⇒2a-3-2×b0+1
⇒2a-5×b1
⇒$\dfrac{2b}{a^5}$
(iii) $\dfrac{2x^{2}y^{-2}}{2^{-1}x^{2}y^{2}}$
Sol :
Using property : $\dfrac{1}{a^{-1}}=a^1$
⇒(2x2y-2)(21x-2y-2)
⇒(2×2)x2-2y-2-2
⇒4x0y-4
Using property : a0=1
⇒4y-4
⇒$\dfrac{4}{y^4}$
(iv) $\dfrac{(t^{-4})^3}{(t^{3})^{-4}}$
Sol :
Using property: (am)n=a(m×n)
⇒$\dfrac{t^{-12}}{t^{-12}}$
⇒1
(v) 4k2(4-1k+4k-2)
Sol :
⇒4k2(4-1k)+4k2(4k-2)
using property: $\dfrac{1}{a}=a^{-1}$
⇒$\dfrac{4k^{2}\times k}{4}+\dfrac{4k^{2}\times 4}{k^{2}}$
⇒$\dfrac{k^{2+1}}{1}+\dfrac{16k^{2}}{k^{2}}$
⇒k3+16
(vi) $\left(\dfrac{3x^{-2}}{2y^{-1}}\right)^{-2}$
Sol :
⇒$\dfrac{(3x^{-2})^{-2}}{(2y^{-1})^{-2}}$
Using property : (am)n=a(m×n)
⇒$\dfrac{3^{-2}x^{4})}{2^{-2}y^{2}}$
⇒$\dfrac{9^{-1}x^{4})}{4^{-1}y^{2}}$
⇒$\dfrac{4x^{4})}{9y^{2}}$
(vii) $\left[\dfrac{3^{-1}}{(-2)^{-2}}\right]^{-2}$
Sol :
⇒$\dfrac{(3^{-1})^{-2}}{\{(-2)^{-2}\}^{-2}}$
Using property : (am)n=a(m×n)
⇒$\dfrac{3^{2}}{(-2)^{4}}=\dfrac{9}{16}$
Q5 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 5
Express each of the following as a power of 2 : 8 , 8x , 16x+3
Sol :
⇒8=2×2×2=23
⇒8x=(2×2×2)x=23x
⇒16x+3=(2×2×2×2)x+3
Q6 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 6
If a = 2m and b = 2{m+1} , show that $\dfrac{8a^3}{b^2}=2^{m+1}$
Sol :
⇒$\dfrac{8a^3}{b^2}$
⇒$\dfrac{8(2^m)^3}{(2^{m+1})^2}$
Using property : (am)n=a(m×n)
⇒$\dfrac{2^3\times 2^{3m}}{2^{2m+2}}$
Using property : a(m×n)=(am)n
⇒$\dfrac{2^3\times 2^{2m+m}}{2^{2m}+2^{2}}$
⇒$\dfrac{2^3\times 2^{2m}\times 2^{m}}{2^{2m} \times 2^{2}}$
⇒$\dfrac{2^3\times \not{(2^{2m} )}\times 2^{m}}{\not{(2^{2m}) }\times 2^{2}}$
⇒2×2m
Using property : am×an=a(m+n)
⇒2m+1
Hence proved
Q7 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 7
If x = 2k and y = 2k+3 , what is the value of $\dfrac{x}{y}$ ?
Sol :
⇒$\dfrac{x}{y}$
⇒$\dfrac{2^k}{2^{k+3}}$
Using property: a(m+n)=am×an
⇒$\dfrac{\not{(2^k)}}{\not{(2^{k})}+2^{3}}$
⇒$\dfrac{1}{8}$
Q8 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 8
Write each expression such that there is no variable in the denominator .
(i) $\dfrac{3r^{-2}s^{3}}{12r^{-3}s^{7}}$
Sol :
⇒(3r-2s3)(r3s-7)/12
Using property: am×an=a(m+n)
⇒$\dfrac{3}{12}(r^{-2+3}s^{3-7})$
⇒$\dfrac{1}{4}(r^{1}s^{-4})$
⇒$\dfrac{r^{1}s^{-4}}{4}$
(ii) $\dfrac{12x^3y^{-2}z^{4}}{6x^{7}y^{-5}z^{-3}}$
Sol :
⇒$\dfrac{12}{6}(x^3 y^{-2} z^4)(x^{-7} y^{5} z^{3})$
Using property: am×an=a(m+n)
⇒2(x3-7×y-2+5×z4+3)
⇒2(x-4×y3×z7)
⇒2x-4y3z7
(iii) $\dfrac{(5m)^{0}n^{-2}}{4mn^{-3}}$
Sol :
⇒$\dfrac{5^0}{4}(m^0 \times n^{-2})(m^{-1}n^{3})$
Using property: a0=1
⇒$\dfrac{1}{4}(1 \times n^{-2})(m^{-1}n^{3})$
Using property: am×an=a(m+n)
⇒$\dfrac{1}{4}( n^{-2+3})(m^{-1})$
⇒$\dfrac{nm^{-1}}{4}$
(iv) $\dfrac{14a^{-4}k}{7^{0}a^{3}k^{8}}$
Sol :
⇒$\dfrac{14}{7^0}(a^{-4}k)(a^{-3}k^{-8})$
Using property: a0=1
⇒14 (a-4k)(a-3k-8)
⇒14 (a-4-3k1-8)
⇒14 (a-7k-7)
Q9 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 9
Simplify:
(i) $\dfrac{2^{-n}. 8^{2n-1} . 16^{2n}}{4^{3n}}$
Sol :
⇒$\dfrac{2^{-n}\times 2^{3(2n-1)} \times 2^{4(2n)}}{2^{2(3n)}}$
⇒$\dfrac{2^{-n}\times 2^{6n-3} \times 2^{8n}}{2^{6n}}$
⇒$\dfrac{2^{-n}\times \not{(2^{6n})} \times 2^{-3} \times 2^{8n}}{\not{(2^{6n})}}$
⇒2-n× 2-3× 28n
Using property : am×an=a(m+n)
⇒2-n-3+8n
⇒2+7n-3
(ii) $\dfrac{2^{n+4}-2.2^{n}}{2.2^{n+3}}+2^{-3}$
Sol :
Using property : am×an=a(m+n)
⇒$\dfrac{2^{n+4}-2^{n+1}}{2^{n+4}}+2^{-3}$
⇒$\dfrac{\not{(2^{n+4})}}{\not{(2^{n+4})}}-\dfrac{2^{n+1}}{2^{n+4}}+2^{-3}$
⇒$1-\dfrac{2^{n+1}}{2^{(n+1)+(3)}}+2^{-3}$
⇒$1-\dfrac{\not{(2^{n+1})}}{\not{(2^{(n+1)})}\times 2^{(3)}}+2^{-3}$
⇒$1-\dfrac{1}{2^3}+\dfrac{1}{2^3}$
⇒1
(iii) $\dfrac{(0.6)^0-(0.1)^{-1}}{\left(\dfrac{3}{2^{3}}\right)^{-1}.\left(\dfrac{3}{2}\right)^{3}+\left(-\dfrac{1}{3}\right)^{-1}}$
Sol :
Using property: a0=1
⇒$\dfrac{1-\left(\dfrac{1}{10}\right)^{-1}}{\left(\dfrac{3}{2^{3}}\right)^{-1} \times \left(\dfrac{3}{2}\right)^{3} + \left(-\dfrac{1}{3}\right)^{-1}}$
Using property: $a^{-1}=\dfrac{1}{a}$
⇒$\dfrac{1-\dfrac{10}{1}}{\left(\dfrac{2^{3}}{3}\right) \times \left(\dfrac{3^3}{2^3}\right) - \left(\dfrac{3}{1}\right)}$
⇒$\dfrac{1-10}{\left(\dfrac{\not{(8)}}{\not{(3)}}\right) \times \left(\dfrac{\not{(27)}}{\not{(8)}}\right) -3}$
⇒$\dfrac{-9}{9-3}=-\dfrac{9}{6}=-\dfrac{3}{2}$
Q10 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 10
If $\dfrac{9^n \times 3^5 \times (27)^3}{3\times (81)^4}=27$ , then find the value of n
Sol :
⇒$\dfrac{9^n \times 3^5 \times (27)^3}{3\times (81)^4}$
⇒$\dfrac{3^{2n} \times 3^5 \times 3^{9}}{3^{1}\times 3^{16}}$
Using property: am×an=a(m+n)
⇒$\dfrac{3^{2n+5+9}}{3^{16+1}}$
⇒$\dfrac{3^{2n+14}}{3^{17}}$
⇒32n×314×3-17
⇒32n×314-17
⇒32n×3-3
⇒$\dfrac{3^{2n}}{3^3}=27$ according to question
⇒32n=33×33
⇒32n=36
⇒32n=32×3
⇒n=3
Q11 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 11
Show that :
(i) $\left(\dfrac{x^a}{x^{b}}\right)^{(a+b)} \times \left(\dfrac{x^b}{x^c}\right)^{(b+c)} \times \left(\dfrac{x^c}{x^a}\right)^{(c+a)}=1$
Sol :
Using property : $\dfrac{a^m}{a^n}=a{(m-n)}$
⇒{x(a-b)}(a+b) × {x(b-c)}(b+c) × {x(c-a)}(c+a)
Using property : (am)n=am×n
⇒x(a-b)×(a+b) × x(b-c)×(b+c) × x(c-a)×(c+a)
Using property : (a+b)(a-b)=a2-b2
⇒$x^{a^2-b^2} \times x^{b^2-c^2} \times x^{c^2-a^2}$
Using property : am×an=a(m+n)
⇒$x^{a^2-b^2+b^2-c^2+c^2-a^2}$
⇒x0
Using property : a0=1
⇒1
Hence proved
(ii) $\dfrac{x^{a+b}\times x^{b+c}\times x^{c+a}}{(x^a \times x^b \times x^c)^2}=1$
Sol :
Using property : am×an=a(m+n)
⇒$\dfrac{x^{a+b+b+c+c+a}}{(x^{a+b+c})^2}$
⇒$\dfrac{x^{2a+2b+2c}}{(x^{a+b+c})^2}$
⇒$\dfrac{\not{(x^{2a+2b+2c})}}{\not{(x^{2a+2b+2c})}}$
⇒1
Hence proved
Q12 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 12
Find x such that
(i) $\left(\dfrac{7}{4}\right)^{-3} \times \left(\dfrac{7}{4}\right)^{-5}=\left(\dfrac{7}{4}\right)^{3x-2}$
Sol :
Using property : am×an=a(m+n)
⇒$\left(\dfrac{7}{4}\right)^{-3-5}=\left(\dfrac{7}{4}\right)^{3x-2}$
⇒$\left(\dfrac{7}{4}\right)^{-8}=\left(\dfrac{7}{4}\right)^{3x-2}$
On comparing both sides
⇒-8=3x-2
Transposing -2
⇒-8+2=3x
Transposing 3
⇒$x=\dfrac{-6}{3}=-2$
(ii) $\left(\dfrac{125}{8}\right)\times \left(\dfrac{125}{8}\right)^x=\left(\dfrac{5}{2}\right)^{18}$
Sol :
Using property : am×an=a(m+n)
⇒$\left(\dfrac{125}{8}\right)^{x+1}=\left(\dfrac{5}{2}\right)^{18}$
⇒$\left(\dfrac{5^3}{2^3}\right)^{x+1}=\left(\dfrac{5}{2}\right)^{18}$
⇒$\left(\dfrac{5}{2}\right)^{3(x+1)}=\left(\dfrac{5}{2}\right)^{18}$
Comparing both sides
⇒3(x+1)=18
⇒3x+3=18
⇒3x=18-3
⇒$x=\dfrac{15}{3}=5$
Q13 | Ex-2 | Class 8 | Schand composite mathematics solution | myhelper
Question 13
Find the value of x such that
(i) $3^{2x-1}=\dfrac{1}{27^{x-3}}$
Sol :
⇒$3^{2x-1}=\dfrac{1}{3^{3(x-3)}}$
⇒32x-1=3-3x+9
On comparing both sides
⇒2x-1=-3x+9
⇒3x+2x=9+1
⇒5x=10
⇒$x=\dfrac{10}{5}=2$
(ii) $\left(\dfrac{p}{q}\right)^{3x+2}=\left(\dfrac{q}{p}\right)^{2-x}$
Sol :
⇒$\left(\dfrac{p}{q}\right)^{3x+2}=\left(\dfrac{p}{q}\right)^{-2+x}$
On comparing both sides
⇒3x+2=-2+x
⇒3x-x=-2-2
⇒2x=-4
⇒$x=\dfrac{-4}{2}=-2$
please send mcqs and challege questions also
ReplyDelete