S.chand composite class 8 mathematics solution chapter 12 Fundamental concept and Operations exercise 12 D

EXERCISE 12 D


Q1 | Ex-12D | Class-8 | Schand Composite Mathematics | Fundamental concept and operations | myhelper


QUESTION 1

Divide

(i) 28a3b2c by 7ab

Sol :

$=\frac{28a^3b^2c}{7ab}$

=4a2bc


(ii) 48a4b5c6 by - 16a2c2

Sol :

$=\frac{48a^4b^5c^6}{- 16a^2c^2}$

=-3a2b5c4


(iii) $-\dfrac{4}{5}a^2b^2c^4 \text{ by } -\dfrac{6}{15}abc^2$

Sol :

$=\dfrac{-\frac{4}{5}a^2b^2c^4}{-\frac{6}{15}abc^2}$

$=-\frac{4}{5}\times -\frac{15}{6}=\frac{60}{30}$

=2abc2



Q2 | Ex-12D | Class-8 | Schand Composite Mathematics | Fundamental concept and operations | myhelper

QUESTION 2

Divide :

(i) 16pr2-8pr3-4p2r2 by -4pr2

Sol :

$=\frac{16pr^2-8pr^3-4p^2r^5}{-4pr^2}$

$=\frac{16pr^2}{-4pr^2}+\frac{-8pr^3}{-4pr^2}+\frac{-4p^2r^5}{-4pr^2}$

=-4+2r+pr3


(ii) 6x7-8x6+4x5-10x4+6x3 by -2x3

Sol :

$=\frac{6x^7-8x^6+4x^5-10x^4+6x^3}{-2x^3}$

$=\frac{6x^7}{-2x^3}+\frac{-8x^6}{-2x^3}+\frac{+4x^5}{-2x^3}+\frac{-10x^4}{-2x^3}+\frac{+6x^3}{-2x^3}$

=-3x4+4x3-2x2+5x-3


(iii) 7x4y2-14x3y3+35x2y4-56x7y5+21y6 by 7x2y2

Sol :

$=\frac{7x^4y^2}{7x^2y^2}-\frac{14x^3y^3}{7x^2y^2}+\frac{35x^2y^4}{7x^2y^2}-\frac{56x^7y^5}{7x^2y^2}+\frac{21y^6}{7x^2y^2}$

=x2-2xy+5y2-8x5y3+$\frac{3y^4}{x^2}$


(iv) $\dfrac{3}{5}abc-\dfrac{2}{5}a^2bc^2+\dfrac{1}{7}ab^2 \text{ by } \dfrac{1}{3}abc$

Sol :

=$\dfrac{\frac{3}{5}abc}{\frac{1}{3}abc}-\dfrac{\frac{2}{5}a^2bc^2}{\frac{1}{3}abc}+\dfrac{\frac{1}{7}ab^2}{\frac{1}{3}abc}$

$=\left(\frac{3}{4}\times \frac{3}{1}\right)-\left(\frac{2}{5}\times \frac{3}{1}\right)ac+\left(\frac{1}{7}\times \frac{3}{1}\right)\frac{b}{c}$

$=\frac{9}{4}-\frac{6}{5}ac+\frac{3b}{7c}$



Q3 | Ex-12D | Class-8 | Schand Composite Mathematics | Fundamental concept and operations | myhelper

QUESTION 3

Divide :

(i) (x2+8x+15) by (x+3)

Sol :

$\begin{array}{l}x+3\overline{)+x^2+8x+15(}x+5\\\phantom{x+3}+x^2+3x\\\phantom{x+3}-\phantom{x^2}-\phantom{3x}\\ \phantom{x+3)}\overline{\phantom{x^2} +5x+15}\\\phantom{x+3)x^2}+5x+15\\\phantom{x+3)x^2}-\phantom{5x}-\phantom{15 }\\\phantom{x+3)x^2} \overline{\phantom{+5x+1}0}\end{array}$


(ii) (2x2+7x+6) by (x+2)

Sol :

$\begin{array}{l}x+2\overline{)+2x^2+7x+6(}2x+3\\\phantom{x+2}+2x^2+4x\\\phantom{x+2}-\phantom{2x^2}-\phantom{4x} \\ \phantom{x+2)}\overline{\phantom{2x^2}+3x+6}\\\phantom{x+2)2x^2}+3x+ 6\\\phantom{x+2)2x^2}-\phantom{3x}-\phantom{6} \\\phantom{x+2)2x^2} \overline{\phantom{+3x+6}0}\end{array}$

(iii) (-2x2-3x+2) by (x+2)

Sol :

$\begin{array}{l}x+2\overline{)-2x^2-3x+2(}-2x+1\\ \phantom{x+2}-2x^2-4x\\\phantom{x+2}+\phantom{2x^2}+\phantom{4x}\\\phantom{x+2}\overline{\phantom{+2x^2}+1x+2}\\\phantom{x+2+2x}+1x+2\\\phantom{x+2+2x}-\phantom{1x}-\phantom{2}\\\phantom{x+2+2x^2}\overline{\phantom{+1x+2}0}\end{array}$


(iv) (12x2+7xy-10y2) by (3x-2y)

Sol :

$\begin{array}{l}3x-2y\overline{)+12x^2+7xy-10y^2(}4x+5y\\\phantom{3x-2y}+12x^2-8xy\\\phantom{3x-2y}-\phantom{12x^2}+\phantom{8xy}\\ \phantom{3x-2y}\overline{\phantom{-12x^2}+15xy-10y^2}\\ \phantom{3x-2y-12x}+15xy-10y^2\\ \phantom{3x-2y-12x}-\phantom{15xy}+\phantom{10y^2}\\\phantom{3x+2y-12x^2}\overline{\phantom{+15xy+10y^2}0} \end{array}$


(v) (6+x-4x2+x3) by (x-3)

Sol :

$\begin{array}{l}x-3\overline{)+x^3-4x^2+x+6(}x^2-x-2\\\phantom{x-3}+x^3-3x^2\\\phantom{x-3}-\phantom{x^2}+\phantom{3x^2}\\\phantom{x-3)}\overline{\phantom{-x^3}-x^2+x}\\\phantom{x-3-x^3}-x^2+3x\\\phantom{x-3-x^3}+\phantom{x^2}-\phantom{3x}\\\phantom{x-3)-x^3}\overline{\phantom{+x^2}-2x+6}\\\phantom{x-3-x^3+x^2}-2x+6\\\phantom{x-3-x^3+x^2}\overline{\phantom{+2x+6}0}\end{array}$


(vi) (x3-125y3-15x2y+75xy2) by (x-5y)

Sol :

$\begin{array}{l}x-5y\overline{)+x^3-15x^2y+75xy^2-125y^3(}x^2-10xy+25y^2\\\phantom{x-5y}+x^3-5x^2y\\\phantom{x-5y}-\phantom{x^3}+\phantom{5x^2y}\\\phantom{x-5y)}\overline{\phantom{-x^3}-10x^2y+75xy^2}\\\phantom{x-5y)}\phantom{-x^3}-10x^2y+50xy^2\\\phantom{x-5y)}\phantom{-x^3}+\phantom{10x^2y}-\phantom{75xy^2}\\\phantom{x-5y)-x^2}\overline{\phantom{+10x^2y}+25xy^2-125y^3}\\\phantom{x-5y)-x^2}\phantom{+10x^2y}+25xy^2-125y^3\\\phantom{x-5y)-x^2}\phantom{+10x^2y}-\phantom{25xy^2}+\phantom{125y^3}\\\phantom{x-5y)-x^3+10x^2y}\overline{\phantom{-25xy^2}0\phantom{+125y^3}}\end{array}$



Q4 | Ex-12D | Class-8 | Schand Composite Mathematics | Fundamental concept and operations | myhelper

QUESTION 4

Divide :

(i) x3-125 by (x-5)

Sol :








(ii) 64a3+27b3 by (4a+3b)

Sol :









(iii) (a4-16) by (a+2)

Sol :









(iv) x5-y5 by (x-y)

Sol :










 

4 comments:

Contact Form

Name

Email *

Message *