RS Aggarwal 2019,2020 solution class 7 chapter 8 Ratio and Proportion Exercise 8B

Exercise 8B

Page-128

Question 1:

Show that 30, 40, 45, 60 are in proportion.

Answer 1:

We have:

Product of the extremes = 30 ×  60 = 1800
Product of the means = 40 ×  45 = 1800
Product of extremes = Product of means

Hence, 30 : 40 :: 45 : 60

Question 2:

Show that 36, 49, 6, 7 are not in proportion.

Answer 2:

We have:
Product of the extremes = 36 × 7 = 252
Product of the means = 49 × 6 = 294
Product of the extremes Product of the means

Hence, 36, 49, 6 and 7 are not in proportion.

Question 3:

If 2 : 9 :: x : 27, find the value of x.

Answer 3:

Product of the extremes = 2 ×  27 = 54
Product of the means  = 9 ×  x = 9x

Since 2 : 9 :: x : 27, we have:
Product of the extremes = Product of the means
⇒ 54 = 9x
⇒ x = 6

Question 4:

If 8 : x :: 16 : 35, find the value of x.

Answer 4:

Product of the extremes = 8 ×  35 = 280
Product of the means = 16 ×  x = 16x

Since 8 : x :: 16 : 35, we have:
Product of the extremes = Product of the means
⇒ 280 = 16x
x = 17.5

Question 5:

If x : 35 :: 48 : 60, find the value of x.

Answer 5:

Product of the extremes = x × 60 = 60x
Product of the means = 35 × 48 = 1680

Since x : 35 :: 48 : 60, we have:
Product of the extremes = Product of the means
⇒ 60x= 1680
x = 28

Question 6:

Find the fourth proportional to the numbers:

(i) 8, 36, 6
(ii) 5, 7, 30
(iii) 2.8, 14, 3.5

Answer 6:

(i) Let the fourth proportional be x.
Then, 8 : 36 :: 6 : x

8 × x = 36 × 6                                   [Product of extremes = Product of means]
⇒ 8x = 216
x = 27
Hence, the fourth proportional is 27.

(ii) Let the fourth proportional be x.
Then, 5 : 7 :: 30 : x
5 ×x = 7 ×30                                      [Product of extremes = Product of means]
⇒ 8x = 216
⇒ 5x = 210
x = 42

Hence, the fourth proportional is 42.

(iii) Let the fourth proportional be x.
Then, 2.8 × x =14 × 3.5                                [Product of extremes = Product of means]
⇒ 8x = 216
⇒ 2.8x = 49
x = 17.5
Hence, the fourth proportional is 17.5.

Question 7:

If 36, 54, x are in continued proportion, find the value of x.

Answer 7:

36, 54 and x are in continued proportion.
Then, 36 : 54 :: 54 : x
36 × x =54 × 54                                 [Product of extremes = Product of means]
⇒ 36x = 2916
x = 81

Question 8:

If 27, 36, x are in continued proportion, find the value of x.

Answer 8:

27, 36 and x are in continued proportion.
Then, 27 : 36 :: 36 : x
27×x = 36 ×36         [Product of extremes = Product of means]
⇒ 27x = 1296
x = 48

Hence, the value of x is 48.

Question 9:

Find the third proportional to:

(i) 8 and 12
(ii) 12 and 18
(iii) 4.5 and 6

Answer 9:

(i)  Suppose that x is the third proportional to 8 and 12.
Then, 8 :12 :: 12 : x
⇒ 8 ×x = 12 × 12                                            (Product of extremes = Product of means )
⇒ 8x = 144
x = 18

Hence, the required third proportional is 18.

(ii) Suppose that x is the third proportional to 12 and 18.
Then, 12 : 18 :: 18 : x
12 × x = 18 ×18                                       (Product of extremes = Product of means )
⇒ 12x = 324
x = 27

Hence, the third proportional is 27.

(iii) Suppose that x is the third proportional to 4.5 and 6.
Then, 4.5 : 6:: 6 : x
4.5 × x= 6 × 6                                         (Product of extremes = Product of means )
⇒ 4.5x = 36
x = 8

Hence, the third proportional is 8.

Question 10:

If the third proportional to 7 and x is 28, find the value of x.

Answer 10:

The third proportional to 7 and x is 28.
Then, 7 : x :: x : 28
⇒ 7 × 28 = x2           (Product of extremes = Product of means)
x = 14

Question 11:

Find the mean proportional between:

(i) 6 and 24
(ii) 3 and 27
(iii) 0.4 and 0.9

Answer 11:

(i)  Suppose that x is the mean proportional.
 
Then, 6 : x :: x : 24

6 × 24 = x × x                                         (Product of extremes = Product of means)
x2  = 144
x = 12

Hence, the mean proportional to 6 and 24 is 12.

(ii)  Suppose that x is the mean proportional.

Then, 3 : x :: x : 27
3 × 27 = x × xx2 = 81                                         (Product of extremes =Product of means)
x = 9

Hence, the mean proportional to 3 and 27 is 9.

(iii)  Suppose that x is the mean proportional.

Then, 0.4 : x :: x : 0.9

0.4 × 0.9 = x × xx2 = 0.36                              (Product of extremes =Product of means)
⇒x = 0.6

Hence, the mean proportional to 0.4 and 0.9 is 0.6.

Question 12:

What number must be added to each of the numbers 5, 9, 7, 12 to get the numbers which are in proportion?

Answer 12:

Suppose that the number is x.
 
Then, (5 + x) : ( 9 + x) :: (7 + x) : (12 + x)

(5 + x) ×(12 + x) = (9 + x) × (7 + x)            (Product of extremes = Product of means)60 +5 x + 12 x + x2 = 63 + 9x + 7x + x260 + 17x = 63 + 16xx = 3

Hence, 3 must be added to each of the numbers: 5, 9, 7 and 12, to get the numbers which are in proportion.

Question 13:

What number must be subtracted from each of the numbers 10, 12, 19, 24 to get the numbers which are in proportion?

Answer 13:

Suppose that x is the number that is to be subtracted.

Then, (10 − x) : (12 − x) :: (19 − x) : (24 − x)

(10- x) ×(24 - x) =(12 - x) ×(19 - x)                   (Product of extremes =Product of means)240 - 10x -24x + x2 = 228 - 12x -19x + x2240 - 34x = 228 - 31x3x = 12x = 4
.
Hence, 4 must be subtracted from each of the numbers: 10, 12, 19 and 24, to get the numbers which are in proportion.

Question 14:

The scale of a map is 1 : 5000000. What is the actual distance between two towns, if they are 4 cm apart on the map?

Answer 14:

Distance represented by 1 cm on the map = 5000000 cm = 50 km

Distance represented by 3 cm on the map = 50 × 4 km = 200 km

∴ The actual distance is 200 km.

Question 15:

At a certain time a tree 6 m high casts a shadow of length 8 metres. At the same time a pole casts a shadow of length 20 metres. Find the height of the pole.

Answer 15:

(Height of tree) : (height of its shadow) = (height of the pole) : (height of its shadow)

Suppose that the height of pole is x cm.

Then, 6 : 8 = x : 20

x = 6×208 = 15
∴ Height of the pole = 15 cm

No comments:

Post a Comment

Contact Form

Name

Email *

Message *