RS Aggarwal 2019,2020 solution class 7 chapter 7 Linear Equation In One Variable Test Paper 7

Test Paper 7

Page-118

Question 1:

Evaluate x3 + y3 + z3 −3xyz when x = −2, y = −1 and z = 3.

Answer 1:

 We have:x3+y3+z33xyz=(-2)3+(-1)3+(3)33×(2)×(1)×3=81+2718=27+27=0

Question 2:

Write the coefficient of x in each of the following:

(i) −5xy
(ii) 2xy2z
(iii) -32abc

Answer 2:

Coefficient of  in the  given numbers are(i) 5y                    (ii) 2y2z                   (iii) 32ab

Question 3:

Subtract x2 − 2xy + 5y2 − 4 from 4xy − 5x2y2 + 6.

Answer 3:

 We have:(4xy5x2y2+6)(x22xy+5y24)=4xy5x2y2+6x2+2xy5y2+4=6x26y2+6xy+10=2(3x2+3y23xy5)

Question 4:

How much less is x2 − 2xy + 3y2 than 2x2 − 3y2 + xy?

Answer 4:

 We have:(2x23y2+xy)(x22xy+3y2)=2x23y2+xyx2+2xy-3y2)=2x2x23y23y2+xy+2xy=x26y2+3xy x22xy+3y2 is less than 2x23y2+x by x26y2+3xy.

Question 5:

Find the product 35abc3×-2512a3b2×(-8b3c).

Answer 5:

 We have: 35abc3×(25)12a3b2×(8b3c)=3151abc3×(255)1241a3b2×(82b3c)=abc3×(5a3b2)×(2b3c)=10a4b6c4

Question 6:

Simplify:

(3a + 4)(2a − 3) + (5a − 4)(a + 2)

Answer 6:

 We have:(3a+4)(2a3)+(5a4)(a+2)={3a(2a3)+4(2a3)}+{5a(a+2)4(a+2)}=(6a29a+8a12)+(5a2+10a4a8)=(6a2a12)+(5a2+6a8)=(11a2+5a20)

Question 7:

Solve: 3x10+2x5=7x25+2925.

Answer 7:

 We have:3x10+2x5=7x25+29253x+4x10=7x+29253x+4x10=7x+29257x10=7x+2925175x=70x+290105x=290x=2905810521x=5821

Question 8:

Solve: 0.5x+x3=0.25x+7.

Answer 8:

We have:0.5x+x3=0.25x+71.5x+x3=0.25x+71.5x+x=3(0.25x+7)2.5x=0.75x+212.5x0.75x=211.75x=21x=211.75x=12

Question 9:

The sum of two consecutive odd numbers is 68. Find the numbers.

Answer 9:

 Let the consecutive odd numbers be x and (x+2).x+(x+2)=682x+2=682x=682x=663321x=33The required numbers are 33 and (33+2), i.e., 35.

Question 10:

Reenu's father is thrice as old as Reenu. After 12 years he will be just twice his daughter. Find their present ages.

Answer 10:

Let Reenu's present age be x.Then, her father's present age will be 3x.Reenu's age after 12 years=(x+12)Her father's age after 12 years=(3x+12)Now, (3x+12)=2(x+12)3x+12=2x+24x=12Reenu's present age =12 yrsAnd her father's age=(3×12)=36 yrs

Question 11:

Mark (✓) against the correct answer
If 2x+53=14x+4, then x = ?
(a) 3
(b) 4
(c) 34
(d) 43

Answer 11:

(d) 432x+53=14x+42x14x=4538x1x4=12537x4=7321x=28x=284213=43

Question 12:

Mark (✓) against the correct answer
If x2-x3=5 then x = ?
(a) 8
(b) 16
(c) 24
(d) 30

Answer 12:

(d) 30x2x3=53x2x6=5x=30

Question 13:

Mark (✓) against the correct answer
If x-23=2x-13-1, then x = ?
(a) 2
(b) 4
(c) 6
(d) 8

Answer 13:

(a) 2x23 =2x131x23=2x133x2=2x4x-2x=-4+2-x=-2x=2

Question 14:

Mark (✓) against the correct answer
A number when multiplied by 4 is increased by 54. The number is

(a) 21
(b) 16
(c) 18
(d) 19

Answer 14:

(c) 18Let the number be x. According to the question, we have:4x=x+543x=54x=18

Question 15:

Two complementary angles differ by 14°. The larger angle is

(a) 50°
(b) 52°
(c) 54°
(d) 56°

Answer 15:

(b) 52°Let the two complementary angles be x° and (90x)°.According to the question, we have: x(90x)=14⇒2x=104x=52(90x)°=90°52°=38°The larger angle is 52°.

Question 16:

The length of a rectangle is twice its breadth and its perimeter is 96 m. The length of the rectangle is

(a) 28 m
(b) 30 m
(c) 32 m
(d) 36 m

Answer 16:

(c) 32 mLet the length and breadth of the rectangle be l m and b m, respectively. According to the question, we have:    l=2b            ...(i)2(l+b)=96      ...(ii)Now, 2(2b+b)=966b=96b=16Length=16×2 m=32 m            

Question 17:

The ages of A and B are in the ratio 4 : 3. After 6 years, their ages will be in the ratio 11 : 9. A's present age is

(a) 12 years
(b) 16 years
(c) 20 years
(d) 24 years

Answer 17:

(b) 12 yearsLet the ages of A and B be x and y years, respectively.Now, xy=433x=4yx=43yAfter 6 years, we have: x + 6 y+6=11943y+6y+6=1194y+183(y+6)=11936y+162=33y+1983y=36y=12 x=43×124=16Hence, A's present age is 16 years.

Question 18:

Fill in the blanks

(i) −2a2b is a ...... .
(ii) (a2 − 2b2) is a ...... .
(iii) (a + 2b − 3c) is a ...... .
(iv) In −5ab, the coefficient of a is ...... .
(v) In x2 + 2x − 5, the ...... term is −5.

Answer 18:

(i) −2a2b is a monomial.
(ii) (a2 − 2b2) is a binomial.
(iii) (a + 2b − 3c) is a trinomial.
(iv) In −5ab, the coefficient of a is -5b.
(v) In x2 + 2x − 5, the constant term is −5.

Question 19:

Write 'T' for true and 'F' for false

(i) In −x, the constant term is −1.
(ii) The coeffiecient of x in x2 − 3x + 5 is 3.
(iii) (5x − 7) − (3x − 5) = 2x − 12.
(iv) (3x + 5y)(3x − 5y) = (9x2 − 25y2).
(v) If a = 2 and b = 12, then the value of ab (a2 + b2) is 414.

Answer 19:

(i) FThe coefficient of x is -1.(ii) FThe coefficient of x is -3.(iii) FLHS=(5x-7)-(3x-5)=5x-7-3x+5=2x-2(iv) TLHS=(3x+5y)(3x-5y)=3x(3x-5y)+5y(3x-5y)=9x2-15xy+15xy-25y2=9x2-25y2(v) T(a2+b2)=22+122=4+14=414

No comments:

Post a Comment

Contact Form

Name

Email *

Message *