RS Aggarwal 2019,2020 solution class 7 chapter 7 Linear Equation In One Variable Exercise 7A

Exercise 7A

Page-111

Question 1:

3x − 5 = 0

Answer 1:

3x-5=0 3x=5                    (Transposing -5 to RHS) x=53CHECK: By substituting x=53 in the given equation, we get:LHS =353 - 5 = 5 - 5 = 0RHS = 0 LHS = RHS Hence checked.

Question 2:

8x − 3 = 9 − 2x

Answer 2:

8x − 3 = 9 − 2x
8x + 2x = 9 + 3                   (By transposition)
10x = 12
x=1210=65CHECK: By substituting x=65 in the given equation, we get:LHS: 865-3=485-3=48-155=335RHS: 9-265=9-125=45-125=335 LHS= RHS Hence checked.

Question 3:

7 − 5x = 5 − 7x

Answer 3:

We have:7  5x= 5  7x5x + 7x = 5  7 [transposing -7x to LHS  and 7 to RHS]2x = 2              x = 2121x = 1Thus, x 1 is a solution to the given equation.CHECK:  Substituting x 1 in the given equation, we get:LHS: = 7  5x          = 7 5 × (1)          = 7+5          = 12RHS: = 5  7x=5  7 × (1)= 5 + 7=12 LHS = RHSHence, x = 1  is a solution of the given equation.

Question 4:

3 + 2x = 1 − x

Answer 4:

We have:3+2x = 1 – x⇒ 2x + x+ 3 – 1 = 0               (By transposition) 3x + 2 = 0 x = –23CHECK:  Substituting x=23 in the given equation, we get: LHS: 3+2x          =3+2×(23)          =3 43          =9-43          =53RHS: 1 x          =1-23          =1+23          =3+23          =53      LHS=RHSHence,  x=23 is a solution of the given equation

Question 5:

2(x − 2) +3(4x − 1) = 0

Answer 5:

We have:2(x2)+3(4x1) =0 2x4+12x-3 =0 14x7 =0                14x = 7                      (By transposition)x=12CHECK:  Substituting x=12 in the given equation, we get:LHS: 2(x2)+3(4x1)          =2x4+12x-3          =2×124+12×12-3          =1-4+6-3          =7+7          =0RHS: 0∴ LHS= RHS Hence,  x=12 is a solution of the given equation.

Question 6:

5(2x − 3) − 3(3x − 7) = 5

Answer 6:

We have:5(2x3)3(3x7) =5 10x159x+21 = 5 10x9x =5+1521                   (By transposition) x = 2021x=1CHECK:  Substituting x=1 in the given equation, we get: LHS: 5(2x3)3(3x7)          =10x159x+21          =10×(1)159×(1)+21          =1015+9+21          =25+30          =5 RHS: 5 LHS= RHS Hence, x=1 is a solution of the given equation.

Question 7:

2x-13=15-x

Answer 7:

We have:2x13=15x2x+x=15+133x=3×1+5×1153x=3+5153x=815x=815×3x=845CHECK:  Substituting x=845 in the given equation, we get:   LHS: 2x13         =2×84513        =164513       =16×115×145       =161545      =145RHS: 15x         =15845         =1×91×845         =9845         =145 ∴ LHS=RHS Hence, x=845 is a solution of the given equation.   

Question 8:

12x-3=5+13x

Answer 8:

We have:12x3=5+13x12x13x=5+3       (transposing 13x to LHS and 3 to RHS)1×31×26x=8326x=816x=8x=8 × 6x=48CHECK:  Substituting x=48 in the given equation, we get:LHS: 12x3          =121×48243        =243       =21RHS: 5+13x         =5+131×4816         =5+16         =21 ∴ LHS=RHS      Hence,  x=48 is a solution of the given equation.   

Question 9:

x2+x4=18

Answer 9:

  x2+x4=18x×2+x×14=182x+x4=183x4=183x=182×413x=12x=16CHECK:  Substituting x=16 in the given equation, we get:  LHS: x2+x4         =x×2+x×14         =2x+x4         =3x4         =314×162         =18 RHS: 18 LHS=RHS Hence, x=13 is a solution of  the given equation.   

Question 10:

3x + 2(x + 2) = 20 − (2x − 5)

Answer 10:

We have:3x+2(x+2)=20(2x5) 3x+2x+4 = 202x+5 3x+2x+2x=20+54        (Transposing 2x to LHS and 4 to RHS) 7x =21x=21371x=3CHECK:  Substituting x=3 in the given equation, we get:LHS=3x+2(x+2)          =3x+2x+4          =5x+4          =5×3+4          =15+4          =19 RHS=20(2x5)          =202x+5         =252×3         =256         =19 LHS=RHSHence, x=3 is a solution of the given equation

Question 11:

13(y − 4) − 3(y − 9) − 5(y + 4) = 0

Answer 11:

We have:13(y4)3(y9)5(y+4)=0 13y523y+275y20 = 013y3y5y=52+2027        (Transposing 52,20 and 27 to RHS)5y =45y=45951y=9CHECK:  Substituting x=9 in the given equation, we get:LHS=13(y4)3(y9)5(y+4)          =13y523y+275y20          =13y3y5y52+2720          =5y45          =5×945          =4545          =0RHS=0∴ LHS=RHS       Hence, x=9 is a solution of the given equation

Question 12:

2m+53=3m-10

Answer 12:

We have,2m+53=3m102m+5=3(3m10)2m+5=9m302m9m=305        (Transposing 9to LHS and 5 to RHS)7m=35m=-355-71m=5CHECK:  Substituting m= 5 in the given equation, we get:LHS=2m+53         =2×5+53        =10+53        =15531       =5 RHS=3m10         =3×510         =1510         =5 ∴ LHS=RHS       Hence, x=5 is a solution of the given equation.

Question 13:

6(3 x + 2) − 5(6x − 1) = 3(x − 8) − 5(7x − 6) + 9x

Answer 13:

We have:6(3x+2)5(6x1)=3(x8)5(7x6)+9x⇒ 18x+1230x+5 =3x2435x+30+9x18x30x3x+35x9x=24+30125        (Transposing 3x,9x and -35x to LHS and 12 and 5 to RHS) 53x42x =304111x=11x=111111x=1CHECK: Substituting x=1 in the given equation, we get:LHS=6(3x+2)5(6x1)          =18x+1230x+5          =12x+17          =12×(1)+17          =12+17          =29     RHS=3(x8)5(7x6)+9x          =3x2435x+30+9x          =12x35x24+30          =23x+6          =23×(1)+6          = 23+6         =29    ∴ LHS=RHS       Hence, x=1 is a solution of the given equation

Question 14:

t − (2t + 5) − 5(1 − 2t) = 2(3 + 4t) −3(t − 4)

Answer 14:

We have:t(2t+5)5(12t)=2(3+4t)3(t4)t2t55+10t =6+8t3t+12t 2t+10t8t+3t=6+12+5+5        (By transposition )14t10t =284t=28x=28741x=7CHECK:  Substituting x=7 in the given equation, we get:LHS=t(2t+5)5(12t)          =t2t55+10t          =11t2t10          =9t10          =9×710          =6310          =53 RHS=2(3+4t)3(t4)          =6+8t3t+12          =5t+18          =5×7+18          =35+18          = 53 ∴ LHS=RHS          Hence, x=7 is a solution of the given equation

Question 15:

23x=38x+712

Answer 15:

We have:23x=38x+71223x38x=712        (Transposing 38x to LHS)2×83×324x=71216924x=712724x=712x=71121×24271x=2CHECK:  Substituting x=2 in the given equation, we get:LHS=23x          =23×2        =43RHS=38x+712         =38×2+712         =68+712         =6×3+7×224         =18+1424         =324243           =43  ∴ LHS=RHS      Hence, x=2 is a solution of the given equation.   

Question 16:

3x-15-x7=3

Answer 16:

We have:3x15x7=37(3x1)5×x35=3        21x75x35=316x735=316x7=3×35                (Transposing 35 to RHS)16x7=10516x=105+716x=112x=1127161x=7CHECK:  Substituting x=7 in the given equation, we get: LHS=3x15x7         =7(3x1)5×x35        =21x75x35       =16x735      =16×7735      =112735     =1053351     =3  RHS=3 ∴ LHS=RHS   Hence, x=3 is a solution of the given equation.   

Question 17:

2x-3=310(5x-12)

Answer 17:

We have:2x3=310(5x12)10(2x3)=3(5x12)        20x30=15x3620x15x=36+30       (Transposing 15x to LHS and 30 to RHS) 5x=6                x=65CHECK: Substituting x=65 in the given equation, we get:LHS=2x3         =2×(65)3        =1253       =12(3×5)5      =12155      =275 RHS=310(5x12)         =310(51×65112)         =310×(18)        =3105×189        =275∴ LHS=RHS    Hence, x=65 is a solution of the given equation.   

Question 18:

y-13-y-24=1

Answer 18:

We have:y13y24=14(y1)3(y2)12=1        4y43y+612=1y+212=1y+2=1×12                y=122y=10CHECK:  Substituting y=10 in the given equation, we get:LHS=y13y24         =4(y1)3(y2)12        =y+212       =10+212      =121121      =1 RHS=1  ∴ LHS=RHS  Hence, y=10 is a solution of the given equation.   

Page-112

Question 19:

x-24+13=x-2x-13

Answer 19:

We have:x24+13=x2x13x24+2x13x=13          (Transposing -2x13 to LHS and 13to RHS)    3(x2)+4(2x1)12x12=133x6+8x412x12=1311x12x10=131×124                x=4+10x=6x=6CHECK:  Substituting x=6 in the given equation, we get:  LHS=x24+13         =624+13        =2+13       =53    RHS=x2x13        =62×(6)13       =6(13)3      =6+133      =53      ∴ LHS=RHS  Hence, y=10 is a solution of the given equation.   

Question 20:

2x-13-6x-25=13

Answer 20:

We have:2x136x25=135(2x1)3(6x2)15=13          10x518x+615=138x+115=138x+1=13×15                8x=51x=48x=24=-12CHECK:  Substituting x=12 in the given equation, we get:LHS=2x136x25         =8x+115        =8×(12)+115       =515       =13RHS=13 ∴ LHS=RHS Hence, y=12 is a solution of the given equation.    

Question 21:

y+73=1+3y-25

Answer 21:

We have:y+73=1+3y25y+73=5×1+3y25              5(y+7)=3(3+3y)5y+35=9+9y9y5y=359                4y=26y=132CHECK:  Substituting x=132 in the given equation, we get: LHS=y+73 =132+73=1×13+2×72=13+146=276=92                 RHS=1+3×13225=1+392×225=1+3510=4510       =92        ∴ LHS=RHS     Hence, y=132 is a solution of the given equation.   

Question 22:

27(x-9)+x3=3

Answer 22:

We have:27(x9)+x3=32×3(x9)+7x21=3        6(x9)+7x=3×216x54+7x=6313x=63+54                13x=117x=9CHECK:  Substituting x=9 in the given equation we get.LHS=27(x9)+x3 =27(99)+x3=0+93=93=3 RHS=3 LHS=RHSHence, x=9 is a solution of the given equation.   

Question 23:

2x-35+x+34=4x+17

Answer 23:

We have:2x35+x+34=4x+174(2x3)+5(x+3)20=4x+17        8x12+5x+1520=4x+1713x+320=4x+177(13x+3)=20(4x+1)                91x+21=80x+2091x80x=202111x=1x=111CHECK:  Substituting x=111 in the given equation, we get:LHS:LHS=2x35+x+34 =2×11135+111+34=23355+33144=3555+3244=-140+160220  =20220  =111      RHS=4x+17=4×(111)+17=4+117×11=777=111 LHS=RHSHence, x=111 is a solution of the given equation.   

Question 24:

34(7x-1)-2x-1-x2=x+32

Answer 24:

We have:34(7x1)2x1x2=x+3234(7x1)2x+1x2x=32        3×74x342x+12x2x=32214x2xx2x=32+3412           (By transposition)21x8x2×x4x4=1+34                21x14x4=747x4=74x=1CHECK:  Substituting x=1 in the given equation, we get:LHS=34(7x1)2x1x2 =34(7×11)2×1112=34×62=922=942=52RHS=x+32=1+32=2+32=52 LHS=RHSHence, x=1 is a solution of the given equation.   

Question 25:

x+26-11-x3-14=3x-412

Answer 25:

We have:x+2611x314=3x412x+2611x3+14=3x412x+2611x33x412=14               (By transposition)2(x+2)4(11x)1(3x4)12=142x+444+4x3x+412=143x36=14×12                3x=3+36x=333x=11CHECK: Substituting x= 11 in the given equation, we get:LHS=x+26(11x314) =11+26(1111314)=136(14)=136+14=13×2+312=2912RHS=3x412=3×11412=33412=292∴ LHS=RHS Hence, x = 11 is a solution of the given equation.  Verified.

Question 26:

9x+72-x-x-27=36

Answer 26:

We have:9x+72(xx27)=369x+72x+x27=367(9x+7)14×x+2×(x2)14=36       63x+4914x+2x414=3651x+45=36×1451x=50445                x=45951x=9x=9CHECK: Substituting x= 9 in the given equation, we get:LHS=9x+72xx27 =9×9+729927=8829+77=449+1=36RHS =36∴ LHS=RHS Hence, x = 11 is a solution of the given equation.  Verified.

Question 27:

0.5x+x3=0.25x+7

Answer 27:

We have:0.5x+x3=0.25x+712x+x3=x4+7x2+x3x4=7       6x+4x3x12=77x12=7x=12             CHECK:  Substituting x= 9 in the given equation, we get:LHS=0.5x+x3 =0.5×12+123=12×12+4=6+4=10RHS=0.25x+7=0.25×12+7=3+7=10∴ LHS=RHS Hence, x = 12 is a solution of the given equation.  Verified.

Question 28:

0.18(5x − 4) = 0.5x + 0.8

Answer 28:

We have:0.18(5x4)=0.5x+0.8100×0.18(5x4)=100(0.5x+0.8)    (Multipling both sides by 100)18(5x4)=100×0.5x+100×0.8       90x72=50x+8090x50x=80+7240x=152x=15240x=195=3.8             CHECK:  Substituting x3.8 in the given equation, we get:LHS=0.18(5x4) =0.18(5×3.84)=0.18×15=2.7RHS=0.5x+0.8=0.5×3.8+0.8=1.9+0.8=2.7∴ LHS=RHS Hence, x = 3.8 is a solution of the given equation.  Verified.

Question 29:

2.4(3 − x) − 0.6(2x − 3) = 0

Answer 29:

We have:2.4(3x)0.6(2x3)=010×2.4(3x)10×0.6(2x3)=0             (Multiplying both sides by 10 to remove decimals)24(3x)6(2x3)=0       6[4(3x)(2x3)]=04(3x)(2x3)=0124x2x+3=0156x=06x=15x=156x=52=2.5             CHECK:  Substituting x2.5 in the given equation, we get:LHS=2.4(3x)0.6(2x3) =2.4(32.5)0.6(2×2.53)=2.4×0.50.6×2=1.2-1.2=0RHS=0∴ LHS = RHS Hence, x = 195 is a solution of the given equation.  Verified.

Question 30:

0.5x −(0.8 − 0.2x) = 0.2 − 0.3x

Answer 30:

We have:0.5x(0.80.2x)=0.20.3x0.5x+0.3x0.8+0.2x=0.2                     (By transposition)(0.5+0.3+0.2)x=0.2+0.8       1x=1x=1CHECK:  Substituting x= 1 in the given equation, we get:  LHS=0.5x(0.80.2x) =0.5×1(0.80.2×1)=0.50.8+0.2=0.1 RHS=0.20.3x=0.20.3×1=0.1∴ LHS=RHS Hence, x = 1 is a solution of the given equation.  Verified.

Question 31:

x+2x-2=73

Answer 31:

We have:x+2x2=73(x+2)×3=7×(x2)       (Cross multiplication)  3x+6=7x14       4x=20x=204x=5CHECK:  Substituting x= 5 in the given equation, we get.  LHS=x+2x2 =5+252=73 RHS=73∴ LHS=RHS Hence, x = 5 is a solution of the given equation.  Verified.

Question 32:

2x+53x+4=3

Answer 32:

We have:2x+53x+4=32x+53x+4=311×(2x+5)=3×(3x+4)       2x+5=9x+127x=7x=1CHECK:  Substituting x=1  in the given equation, we get:LHS: 2x+53x+4 =2×(1)+53×(1)+4=2+53+4=31RHS =3∴ LHS = RHS Hence, x = 5 is a solution of the given equation.  Verified.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *