Exercise 7A
Page-111Question 1:
3x − 5 = 0
Answer 1:
3x-5=0⇒ 3x=5 (Transposing -5 to RHS)⇒ x=53CHECK: By substituting x=53 in the given equation, we get:LHS =3(53) - 5 = 5 - 5 = 0RHS = 0∴ LHS = RHS Hence checked.
Question 2:
8x − 3 = 9 − 2x
Answer 2:
8x − 3 = 9 − 2x
⇒8x + 2x = 9 + 3 (By transposition)
⇒10x = 12
⇒x=1210=65CHECK: By substituting x=65 in the given equation, we get:LHS: 8(65)-3=485-3=48-155=335RHS: 9-2(65)=9-125=45-125=335∴ LHS= RHS Hence checked.
Question 3:
7 − 5x = 5 − 7x
Answer 3:
We have:7 − 5x= 5 − 7x⇒−5x + 7x = 5 − 7 [transposing -7x to LHS and 7 to RHS]⇒2x = −2 ⇒x = −2−121⇒x = −1Thus, x = −1 is a solution to the given equation.CHECK: Substituting x = −1 in the given equation, we get:LHS: = 7 − 5x = 7 −5 × (−1) = 7+5 = 12RHS: = 5 − 7x=5 − 7 × (−1)= 5 + 7=12∴ LHS = RHSHence, x = −1 is a solution of the given equation.
Question 4:
3 + 2x = 1 − x
Answer 4:
We have:3+2x = 1 – x⇒ 2x + x+ 3 – 1 = 0 (By transposition)⇒ 3x + 2 = 0⇒ x = –23CHECK: Substituting x=−23 in the given equation, we get: LHS: 3+2x =3+2×(−23) =3 −43 =9-43 =53RHS: 1− x =1−(-23) =1+23 =3+23 =53 ∴ LHS=RHSHence, x=−23 is a solution of the given equation.
Question 5:
2(x − 2) +3(4x − 1) = 0
Answer 5:
We have:2(x−2)+3(4x−1) =0⇒ 2x−4+12x-3 =0⇒ 14x−7 =0 ⇒ 14x = 7 (By transposition)⇒x=12CHECK: Substituting x=12 in the given equation, we get:LHS: 2(x−2)+3(4x−1) =2x−4+12x-3 =2×12−4+12×12-3 =1-4+6-3 =−7+7 =0RHS: 0∴ LHS= RHS Hence, x=12 is a solution of the given equation.
Question 6:
5(2x − 3) − 3(3x − 7) = 5
Answer 6:
We have:5(2x−3)−3(3x−7) =5⇒ 10x−15−9x+21 = 5⇒ 10x−9x =5+15−21 (By transposition)⇒ x = 20−21⇒x=−1CHECK: Substituting x=−1 in the given equation, we get: LHS: 5(2x−3)−3(3x−7) =10x−15−9x+21 =10×(−1)−15−9×(−1)+21 =−10−15+9+21 =−25+30 =5 RHS: 5∴ LHS= RHS Hence, x=−1 is a solution of the given equation.
Question 7:
2x-13=15-x
Answer 7:
We have:2x−13=15−x⇒2x+x=15+13⇒3x=3×1+5×115⇒3x=3+515⇒3x=815⇒x=815×3⇒x=845CHECK: Substituting x=845 in the given equation, we get: LHS: 2x−13 =2×845−13 =1645−13 =16×1−15×145 =16−1545 =145RHS: 15−x =15−845 =1×9−1×845 =9−845 =145 ∴ LHS=RHS Hence, x=845 is a solution of the given equation.
Question 8:
12x-3=5+13x
Answer 8:
We have:12x−3=5+13x⇒12x−13x=5+3 (transposing 13x to LHS and −3 to RHS)⇒(1×3−1×26)x=8⇒(3−26)x=8⇒16x=8⇒x=8 × 6⇒x=48CHECK: Substituting x=48 in the given equation, we get:LHS: 12x−3 =121×4824−3 =24−3 =21RHS: 5+13x =5+131×4816 =5+16 =21 ∴ LHS=RHS Hence, x=48 is a solution of the given equation.
Question 9:
x2+x4=18
Answer 9:
x2+x4=18⇒x×2+x×14=18⇒2x+x4=18⇒3x4=18⇒3x=182×41⇒3x=12⇒x=16CHECK: Substituting x=16 in the given equation, we get: LHS: x2+x4 =x×2+x×14 =2x+x4 =3x4 =314×162 =18 RHS: 18∴ LHS=RHS Hence, x=13 is a solution of the given equation.
Question 10:
3x + 2(x + 2) = 20 − (2x − 5)
Answer 10:
We have:3x+2(x+2)=20−(2x−5)⇒ 3x+2x+4 = 20−2x+5⇒ 3x+2x+2x=20+5−4 (Transposing −2x to LHS and 4 to RHS)⇒ 7x =21⇒x=21371⇒x=3CHECK: Substituting x=3 in the given equation, we get:LHS=3x+2(x+2) =3x+2x+4 =5x+4 =5×3+4 =15+4 =19 RHS=20−(2x−5) =20−2x+5 =25−2×3 =25−6 =19∴ LHS=RHSHence, x=3 is a solution of the given equation.
Question 11:
13(y − 4) − 3(y − 9) − 5(y + 4) = 0
Answer 11:
We have:13(y−4)−3(y−9)−5(y+4)=0⇒ 13y−52−3y+27−5y−20 = 0⇒13y−3y−5y=52+20−27 (Transposing −52,−20 and 27 to RHS)⇒5y =45⇒y=45951⇒y=9CHECK: Substituting x=9 in the given equation, we get:LHS=13(y−4)−3(y−9)−5(y+4) =13y−52−3y+27−5y−20 =13y−3y−5y−52+27−20 =5y−45 =5×9−45 =45−45 =0RHS=0∴ LHS=RHS Hence, x=9 is a solution of the given equation.
Question 12:
2m+53=3m-10
Answer 12:
We have,2m+53=3m−10⇒2m+5=3(3m−10)⇒2m+5=9m−30⇒2m−9m=−30−5 (Transposing 9m to LHS and 5 to RHS)⇒−7m=−35⇒m=-355-71⇒m=5CHECK: Substituting m= 5 in the given equation, we get:LHS=2m+53 =2×5+53 =10+53 =15531 =5 RHS=3m−10 =3×5−10 =15−10 =5 ∴ LHS=RHS Hence, x=5 is a solution of the given equation.
Question 13:
6(3 x + 2) − 5(6x − 1) = 3(x − 8) − 5(7x − 6) + 9x
Answer 13:
We have:6(3x+2)−5(6x−1)=3(x−8)−5(7x−6)+9x⇒ 18x+12−30x+5 =3x−24−35x+30+9x⇒18x−30x−3x+35x−9x=−24+30−12−5 (Transposing 3x,9x and -35x to LHS and 12 and 5 to RHS)⇒ 53x−42x =30−41⇒11x=−11⇒x=−111111⇒x=−1CHECK: Substituting x=−1 in the given equation, we get:LHS=6(3x+2)−5(6x−1) =18x+12−30x+5 =−12x+17 =−12×(−1)+17 =12+17 =29 RHS=3(x−8)−5(7x−6)+9x =3x−24−35x+30+9x =12x−35x−24+30 =−23x+6 =−23×(−1)+6 = 23+6 =29 ∴ LHS=RHS Hence, x=−1 is a solution of the given equation.
Question 14:
t − (2t + 5) − 5(1 − 2t) = 2(3 + 4t) −3(t − 4)
Answer 14:
We have:t−(2t+5)−5(1−2t)=2(3+4t)−3(t−4)⇒t−2t−5−5+10t =6+8t−3t+12⇒t −2t+10t−8t+3t=6+12+5+5 (By transposition )⇒14t−10t =28⇒4t=28⇒x=28741⇒x=7CHECK: Substituting x=7 in the given equation, we get:LHS=t−(2t+5)−5(1−2t) =t−2t−5−5+10t =11t−2t−10 =9t−10 =9×7−10 =63−10 =53 RHS=2(3+4t)−3(t−4) =6+8t−3t+12 =5t+18 =5×7+18 =35+18 = 53 ∴ LHS=RHS Hence, x=7 is a solution of the given equation.
Question 15:
23x=38x+712
Answer 15:
We have:23x=38x+712⇒23x−38x=712 (Transposing 38x to LHS)⇒(2×8−3×324)x=712⇒(16−924)x=712⇒724x=712⇒x=71121×24271⇒x=2CHECK: Substituting x=2 in the given equation, we get:LHS=23x =23×2 =43RHS=38x+712 =38×2+712 =68+712 =6×3+7×224 =18+1424 =324243 =43 ∴ LHS=RHS Hence, x=2 is a solution of the given equation.
Question 16:
3x-15-x7=3
Answer 16:
We have:3x−15−x7=3⇒7(3x−1)−5×x35=3 ⇒(21x−7−5x35)=3⇒(16x−735)=3⇒16x−7=3×35 (Transposing 35 to RHS)⇒16x−7=105⇒16x=105+7⇒16x=112⇒x=1127161⇒x=7CHECK: Substituting x=7 in the given equation, we get: LHS=3x−15−x7 =7(3x−1)−5×x35 =(21x−7−5x35) =(16x−735) =(16×7−735) =112−735 =1053351 =3 RHS=3 ∴ LHS=RHS Hence, x=3 is a solution of the given equation.
Question 17:
2x-3=310(5x-12)
Answer 17:
We have:2x−3=310(5x−12)⇒10(2x−3)=3(5x−12) ⇒20x−30=15x−36⇒20x−15x=−36+30 (Transposing 15x to LHS and −30 to RHS) ⇒5x=−6 ⇒x=−65CHECK: Substituting x=−65 in the given equation, we get:LHS=2x−3 =2×(−65)−3 =−125−3 =−12−(3×5)5 =−12−155 =−275 RHS=310(5x−12) =310(51×−651−12) =310×(−18) =3105×−189 =−275∴ LHS=RHS Hence, x=−65 is a solution of the given equation.
Question 18:
y-13-y-24=1
Answer 18:
We have:y−13−y−24=1⇒4(y−1)−3(y−2)12=1 ⇒(4y−4−3y+612)=1⇒(y+212)=1⇒y+2=1×12 ⇒y=12−2⇒y=10CHECK: Substituting y=10 in the given equation, we get:LHS=y−13−y−24 =4(y−1)−3(y−2)12 =(y+212) =(10+212) =121121 =1 RHS=1 ∴ LHS=RHS Hence, y=10 is a solution of the given equation.
Question 19:
x-24+13=x-2x-13
Answer 19:
We have:x−24+13=x−2x−13⇒x−24+2x−13−x=−13 (Transposing -2x−13 to LHS and 13to RHS) ⇒(3(x−2)+4(2x−1)−12x12)=−13⇒(3x−6+8x−4−12x12)=−13⇒11x−12x−10=−131×124 ⇒−x=−4+10⇒−x=6⇒x=−6CHECK: Substituting x=−6 in the given equation, we get: LHS=x−24+13 =−6−24+13 =−2+13 =−53 RHS=x−2x−13 =−6−2×(−6)−13 =−6−(−13)3 =−6+133 =−53 ∴ LHS=RHS Hence, y=10 is a solution of the given equation.
Question 20:
2x-13-6x-25=13
Answer 20:
We have:2x−13−6x−25=13⇒5(2x−1)−3(6x−2)15=13 ⇒10x−5−18x+615=13⇒−8x+115=13⇒−8x+1=13×15 ⇒−8x=5−1⇒−x=48⇒x=−24=-12CHECK: Substituting x=−12 in the given equation, we get:LHS=2x−13−6x−25 =−8x+115 =−8×(−12)+115 =515 =13RHS=13 ∴ LHS=RHS Hence, y=−12 is a solution of the given equation.
Question 21:
y+73=1+3y-25
Answer 21:
We have:y+73=1+3y−25⇒y+73=5×1+3y−25 ⇒5(y+7)=3(3+3y)⇒5y+35=9+9y⇒9y−5y=35−9 ⇒4y=26⇒y=132CHECK: Substituting x=132 in the given equation, we get: LHS=y+73 =132+73=1×13+2×72=13+146=276=92 RHS=1+3×132−25=1+39−2×225=1+3510=4510 =92 ∴ LHS=RHS Hence, y=132 is a solution of the given equation.
Question 22:
27(x-9)+x3=3
Answer 22:
We have:⇒27(x−9)+x3=3⇒2×3(x−9)+7x21=3 ⇒6(x−9)+7x=3×21⇒6x−54+7x=63⇒13x=63+54 ⇒13x=117⇒x=9CHECK: Substituting x=9 in the given equation we get.LHS=27(x−9)+x3 =27(9−9)+x3=0+93=93=3 RHS=3∴ LHS=RHSHence, x=9 is a solution of the given equation.
Question 23:
2x-35+x+34=4x+17
Answer 23:
We have:⇒2x−35+x+34=4x+17⇒4(2x−3)+5(x+3)20=4x+17 ⇒8x−12+5x+1520=4x+17⇒13x+320=4x+17⇒7(13x+3)=20(4x+1) ⇒91x+21=80x+20⇒91x−80x=20−21⇒11x=−1⇒x=−111CHECK: Substituting x=−111 in the given equation, we get:LHS:LHS=2x−35+x+34 =2×111−35+−111+34=−2−3355+33−144=−3555+3244=-140+160220 =20220 =111 RHS=4x+17=4×(−111)+17=−4+117×11=777=111∴ LHS=RHSHence, x=−111 is a solution of the given equation.
Question 24:
34(7x-1)-(2x-1-x2)=x+32
Answer 24:
We have:34(7x−1)−(2x−1−x2)=x+32⇒34(7x−1)−2x+1−x2−x=32 ⇒3×74x−34−2x+12−x2−x=32⇒214x−2x−x2−x=32+34−12 (By transposition)⇒21x−8x−2×x−4x4=1+34 ⇒21x−14x4=74⇒7x4=74⇒x=1CHECK: Substituting x=1 in the given equation, we get:LHS=34(7x−1)−(2x−1−x2) =34(7×1−1)−(2×1−1−12)=34×6−2=92−2=9−42=52RHS=x+32=1+32=2+32=52∴ LHS=RHSHence, x=1 is a solution of the given equation.
Question 25:
x+26-(11-x3-14)=3x-412
Answer 25:
We have:x+26−(11−x3−14)=3x−412⇒x+26−(11−x3)+14=3x−412⇒x+26−(11−x3)−3x−412=−14 (By transposition)⇒2(x+2)−4(11−x)−1(3x−4)12=−14⇒2x+4−44+4x−3x+412=−14⇒3x−36=−14×12 ⇒3x=−3+36⇒x=333⇒x=11CHECK: Substituting x= 11 in the given equation, we get:LHS=x+26−(11−x3−14) =11+26−(11−113−14)=136−(−14)=136+14=13×2+312=2912RHS=3x−412=3×11−412=33−412=292∴ LHS=RHS Hence, x = 11 is a solution of the given equation. Verified.
Question 26:
9x+72-(x-x-27)=36
Answer 26:
We have:9x+72−(x−x−27)=36⇒9x+72−x+x−27=36⇒7(9x+7)−14×x+2×(x−2)14=36 ⇒63x+49−14x+2x−414=36⇒51x+45=36×14⇒51x=504−45 ⇒x=45951⇒x=9⇒x=9CHECK: Substituting x= 9 in the given equation, we get:LHS=9x+72−(x−x−27) =9×9+72−(9−9−27)=882−9+77=44−9+1=36RHS =36∴ LHS=RHS Hence, x = 11 is a solution of the given equation. Verified.
Question 27:
0.5x+x3=0.25x+7
Answer 27:
We have:0.5x+x3=0.25x+7⇒12x+x3=x4+7⇒x2+x3−x4=7 ⇒6x+4x−3x12=7⇒7x12=7⇒x=12 CHECK: Substituting x= 9 in the given equation, we get:LHS=0.5x+x3 =0.5×12+123=12×12+4=6+4=10RHS=0.25x+7=0.25×12+7=3+7=10∴ LHS=RHS Hence, x = 12 is a solution of the given equation. Verified.
Question 28:
0.18(5x − 4) = 0.5x + 0.8
Answer 28:
We have:0.18(5x−4)=0.5x+0.8⇒100×0.18(5x−4)=100(0.5x+0.8) (Multipling both sides by 100)⇒18(5x−4)=100×0.5x+100×0.8 ⇒90x−72=50x+80⇒90x−50x=80+72⇒40x=152⇒x=15240⇒x=195=3.8 CHECK: Substituting x= 3.8 in the given equation, we get:LHS=0.18(5x−4) =0.18(5×3.8−4)=0.18×15=2.7RHS=0.5x+0.8=0.5×3.8+0.8=1.9+0.8=2.7∴ LHS=RHS Hence, x = 3.8 is a solution of the given equation. Verified.
Question 29:
2.4(3 − x) − 0.6(2x − 3) = 0
Answer 29:
We have:⇒2.4(3−x)−0.6(2x−3)=0⇒10×2.4(3−x)−10×0.6(2x−3)=0 (Multiplying both sides by 10 to remove decimals)⇒24(3−x)−6(2x−3)=0 ⇒6[4(3−x)−(2x−3)]=0⇒4(3−x)−(2x−3)=0⇒12−4x−2x+3=0⇒15−6x=0⇒−6x=−15⇒x=156⇒x=52=2.5 CHECK: Substituting x= 2.5 in the given equation, we get:LHS=2.4(3−x)−0.6(2x−3) =2.4(3−2.5)−0.6(2×2.5−3)=2.4×0.5−0.6×2=1.2-1.2=0RHS=0∴ LHS = RHS Hence, x = 195 is a solution of the given equation. Verified.
Question 30:
0.5x −(0.8 − 0.2x) = 0.2 − 0.3x
Answer 30:
We have:0.5x−(0.8−0.2x)=0.2−0.3x⇒0.5x+0.3x−0.8+0.2x=0.2 (By transposition)⇒(0.5+0.3+0.2)x=0.2+0.8 ⇒1x=1⇒x=1CHECK: Substituting x= 1 in the given equation, we get: LHS=0.5x−(0.8−0.2x) =0.5×1−(0.8−0.2×1)=0.5−0.8+0.2=−0.1 RHS=0.2−0.3x=0.2−0.3×1=−0.1∴ LHS=RHS Hence, x = 1 is a solution of the given equation. Verified.
Question 31:
x+2x-2=73
Answer 31:
We have:x+2x−2=73⇒(x+2)×3=7×(x−2) (Cross multiplication) ⇒3x+6=7x−14 ⇒4x=20⇒x=204⇒x=5CHECK: Substituting x= 5 in the given equation, we get. LHS=x+2x−2 =5+25−2=73 RHS=73∴ LHS=RHS Hence, x = 5 is a solution of the given equation. Verified.
Question 32:
2x+53x+4=3
Answer 32:
We have:2x+53x+4=3⇒2x+53x+4=31⇒1×(2x+5)=3×(3x+4) ⇒2x+5=9x+12⇒7x=−7⇒x=−1CHECK: Substituting x=−1 in the given equation, we get:LHS: 2x+53x+4 =2×(−1)+53×(−1)+4=−2+5−3+4=31RHS =3∴ LHS = RHS Hence, x = 5 is a solution of the given equation. Verified.
No comments:
Post a Comment