RS Aggarwal 2019,2020 solution class 7 chapter 6 Algebraic Expressions Exercise 6C

Exercise 6C

Page-104

Question 1:

Find the product:

4a(3a + 7b)

Answer 1:

=4a× 3a + 4a× 7b=4× 3 × a(1+1) + 4× 7 × a× b=12a2 +28ab

Question 2:

Find the product:

5a(6a − 3b)

Answer 2:

=5a×6a -5a×3b=5×6×a×a -(5×3×a×b)=30a2-15ab

Question 3:

Find the product:

8a2(2a + 5b)

Answer 3:

=8a2×2a +8a2×5b=8×2×a2×a +8×5×a2×b=16a(2+1) +40a2b=16a3+40a2b

Question 4:

Find the product:

9x2(5x + 7)

Answer 4:

=9x2×5x +9x2×7=9×5×x2×x + 9×7×x2=45x(2+1) +63x2=45x3+63x2

Question 5:

Find the product:

ab(a2 b2)

Answer 5:

=ab×a2-ab×b2=a(1+2)b-ab(1+2)=a3b -ab3

Question 6:

Find the product:

2x2(3x − 4x2)

Answer 6:

=2x2×3x -2x2×4x2=2×3×x2×x -2×4×x2×x2=6×x(2+1) -8×x(2+2)=6x3-8x4

Question 7:

Find the product:

35m2n(m+5n)

Answer 7:

=35m2n ×m +35m2n×5n=35×m2×m×n+35×5×m2×n×n=35m(2+1)×n +3×m2×n(1+1)=35m3n +3m2n2

Question 8:

Find the product:

−17x2(3x − 4)

Answer 8:

=-17x2×3x -(-17x2×4)=-17×3×x2×x +17×4×x2=-51×x(2+1) +68x2=-51x3 +68x2

Question 9:

Find the product:

72x247x+2

Answer 9:

=72x2×47×x +72x2×2=72×47×x2×x +72×2×x2=2×x(2+1)+7x2=2x3 +7x2

Question 10:

Find the product:

−4x2y(3x2 − 5y)

Answer 10:

=-4x2y ×3x2 -(-4x2y×5y)=-4×3×x2×x2×y + 4×5×x2×y×y=-12×x(2+2)×y +20×x2×y(1+1)=-12x4y +20x2y2

Question 11:

Find the product:

-427xyz92x2yz-34xyz2

Answer 11:

=-427xyz×92x2yz -(-427xyz ×34xyz2)=-427×92×x×x2×y×y×z×z +  427×34×x×x×y×y×z×z2=-23×x(1+2) ×y(1+1)×z(1+1) + 19×x(1+1)×y(1+1)×z(1+2)=-23x3y2z2 +19x2y2z3

Question 12:

Find the product:

9t2(t + 7t3)

Answer 12:

=9t2×t +9t2×7t3=9×t2×t+9×7×t2×t3=9×t(2+1) +63×t(2+3)=9t3+63t5

Question 13:

Find the product:

10a2(0.1a − 0.5b)

Answer 13:

=10a2×0.1a - 10a2×0.5b=10×0.1×a2×a -10×0.5×a2×b=1×a(2+1) -5 a2b=a3 -5a2b

Question 14:

Find the product:

1.5a(10a2 − 100ab2)

Answer 14:

=1.5a×10a2b -1.5a×100ab2=1.5×10×a×a2b -  1.5×100×a×a×b2=15×a(1+2)b-150 ×a(1+1)×b2=15a3b-150a2b2

Question 15:

Find the product:

23abc(a2+b2-3c2)

Answer 15:

=23abc×a2 +23abc×b2-23abc×3c2=23a×a2×b×c+23a×b×b2×c -23×3×a×b×c×c2=23×a(1+2)×b×c+23×a×b(1+2)×c -2×a×b×c(1+2)=23a3bc +23ab3c -2abc3

Question 16:

Find the product 24x2(1−2x) and evaluate it for x = 2.

Answer 16:

   24x2(1−2x)=24x2×1 -24x2×2x=24x2 -24×2×x2×x=24x2-48x3When x =2:L.H.S. = 24x2(1-2x) = 24×22(1-2×2) = 96 (1-4)=96×(-3) = -288R.H.S.=  24x2-48x2  = 24×22 - 48×23 = 96-384 = -288L.H.S.= R.H.S.   24x2(1-2x) = 24x2-48x3

Question 17:

Find the product ab(a2+b2) and evaluate it for a = 2 and b = 12.

Answer 17:

ab(2+b2)=ab×a2+ab×b2=a×a2×b +a×b×b2=a(1+2)×b +a×b(1+2)=a3b +ab3When a=2 and b =12, we get:L.H.S.  = ab(a2 +b2) = 2×12(22+122) = 4 +14=174R.H.S.  = a3b +ab3 = 23×12 + 2×123 = 4+ 14 =174  L.H.S. = R.H.S.

Question 18:

Find the product s (s2 st) and find its value for s = 2 and t = 3.

Answer 18:

s (s2− st)=s×s2-s×st=s(1+2) -s(1+1)×t=s3-s2tWhen s =2 and t = 3, we get:L.H.S.= s(s2 -st) = 2(22-2×3) = 2 ×(4-6) = -4R.H.S. = s3-s2t = 23-22×3 = 8 - 12 = -4L.H.S.= R.H.S.  s(s2 -st) =  s3-s2t 

Question 19:

Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.

Answer 19:

   -3y(xy+y2)=-3y×xy -3y×y2=-3×x×y×y -3×y×y2=-3×x×y(1+1) -3×y(1+2)=-3xy2  -3y3When x = 4 and y =5, we get:L.H.S.= -3y(xy +y2) = -3×5(4×5 + 52) = -15 ×(20 +25) = -675R.H.S. =-3xy2  -3y3 = -3×4×52 -3×53 = -300- 375 =-675L.H.S.= R.H.S. -3y(xy +y2) =  -3xy2  -3y3

Question 20:

Simplify

a(b − c) + b(c − a) + c(a − b)

Answer 20:

    a(b − c) + b(c − a) + c(a − b)=a×b -a×c +b×c -b×a +c×a -c×b=ab -ac +bc -ab +ac -bc=0

Question 21:

Simplify

a(b − c− b(c − a) − c(a − b)

Answer 21:

    a(b-c)-b (c-a)-c(a-b)=a×b -a×c -b×c+b×a -c×a +c×b=ab +ab -ac - ac -bc +bc=2ab - 2ac=2a(b-c)

Question 22:

Simplify

3x2 + 2(x + 2) 3x(2x + 1)

Answer 22:

    3x2 +2(x+2)-3x(2x+1)=3x2 +2×x +2×2 -3x×2x -3x=3x2 +2x +4 -6x2 -3x=-3x2-x +4

Question 23:

Simplify

x(x + 4) + 3x(2x2 − 1) + 4x2 + 4

Answer 23:

    x(x+4) +3x(2x2-1) +4x2+4=x×x +x×4 +3x×2x2 -3x +4x2 +4=x(1+1) +4x +6×x(1+2)-3x +4x2+4=x2 +4x +6x3-3x +4x2 +4=6x3+5x2 +x +4

Question 24:

Simplify

2x2 + 3x(1 − 2x3) + x(x + 1)

Answer 24:

   2x2 +3x(1-2x3)+x(x+1)=2x2 +3x -3x×2x3 +x2 +x=2x2 +3x -6×x(1+3) +x2+x=2x2+3x -6x4 +x2 +x=-6x4+3x2 +4x

Question 25:

Simplify

a2b(a b2) + ab2(4ab − 2a2) −a3b(1 − 2b)

Answer 25:

    a2b(a-b2)+ab2(4ab-2a2) -a3b(1-2b)=a2b×a -a2b×b2 +ab2×4ab -ab2×2a2-a3b +a3b×2b=a(2+1)×b - a2×b(1+2) +4×a(1+1)×b(2+1) -2×a(1+2)×b2-a3b +2×a3×b(1+1)= a3b -a2b3 +4a2b3-2a3b2-a3b +2a3b2=3a2b3

Question 26:

Simplify

4st(s t) −6s2(tt2) −3t2 (2s2 s) +2st (st)

Answer 26:

    4st(s-t)-6s2(t-t2)-3t2(2s2-s)+2st(s-t) =4st×s -4st×t -6s2×t-6s2×(-t2) -3t2×2s2-3t2×(-s) +2st×s -2st×t=4×s(1+1)×t -4×s×t(1+1) -6s2t +6s2t2 -6t2s2+3t2s +2×s(1+1)×t -2×s×t(1+1)=4s2t -4st2-6s2t +6s2t2-6t2s2+3t2s+2s2t -2st2=4s2t -6s2t+2s2t -4st2 +3st2-2st2 =-3st2

No comments:

Post a Comment

Contact Form

Name

Email *

Message *