RS Aggarwal 2019,2020 solution class 7 chapter 6 Algebraic Expressions Exercise 6B

Exercise 6B

Page-102

Question 1:

Find the products:

3a2 × 8a4

Answer 1:

3a2 × 8a4
=(3×8)×(a2×a4)=24 ×a(2+4)=24a6

Question 2:

Find the products:

−6x3 × 5x2

Answer 2:

−6x3 × 5x2
=(-6×5)×(x3×x2)=(-30)×(x(3+2))=-30x5

Question 3:

Find the products:

(−4ab) × (−3a2bc)

Answer 3:

(−4ab) × (−3a2bc)
=(-4×-3)×(a×a2×b×b×c)=12×(a3b2c)= 12a3b2c

Question 4:

Find the products:

(2a2b3) × (−3a3b)

Answer 4:

(2a2b3) × (−3a3b)
=(2×(-3))×(a2×a3×b3×b)=(-6)×(a(2+3)×b(3+1))=-6a5b4

Question 5:

Find the products:

23x2y×35xy2

Answer 5:

=(23×35)×(x2×x×y×y2))=25×x(2+1)×y(1+2)=25x3y3

Question 6:

Find the products:

-34ab3×-23a2b4

Answer 6:

=(-34×-23)×(a×a2×b3×b4)=12×a(1+2)×b(3+4)=12a3b7

Question 7:

Find the products:

-127a2b2×-92a3bc2

Answer 7:

=(-127×-92)×(a2×a3×b2×b×c2)=16×a(2+3)×b(2+1)×c2=16a5b3c2

Question 8:

Find the products:

-135ab2c×73a2bc2

Answer 8:

=(-135×73)×(a×a2×b2×b×c×c2)=-9115a(1+2)×b(2+1)×c(1+2)=-9115a3b3c3

Question 9:

Find the products:

-185x2z×-256xz2y

Answer 9:

=(-185×-256)×(x2×x×z×z2×y)=15×x(2+1)×y×z(1+2)=15x3yz3

Question 10:

Find the products:

-314xy4×76x3y

Answer 10:

=(-314×76)×(x×x3×y4×y)=-14x(1+3)×y(4+1)=-14x4y5

Question 11:

Find the products:

-75x2y×32xy2×-65x3y3

Answer 11:

=(-75×32×-65)×(x2×x×x3×y×y2×y3)=6325×x(2+1+3)×y(1+2+3)=6325x6y6

Question 12:

Find the products:

(2a2b) × (−5ab2c) × (−6bc2)

Answer 12:

=(2×(-5)×(-6))×(a2×a×b×b2×b×c×c2)=60×a(2+1)×b(1+2+1)×c(1+2)=60a3b4c3

Question 13:

Find the products:

(−4x2) × (−6xy2) × (−3y)

Answer 13:

=(-4×(-6)×(-3))×(x2×x×y2×y)=-72×x(2+1)×y(2+1)=-72x3y3

Question 14:

 Find the products:

-35s2t×157st2u×79su2

Answer 14:

=(-35×157×79)×(s2×s×s×t×t2×u×u2)=-1×s(2+1+1)×t(1+2)×u(1+2)=-s4t3u3

Question 15:

 Find the products:

-27u4v×-145uv3×-34u2v3

Answer 15:

=(-27×-145×-34)×(u4×u×u2×v×v3×v3)=-35×u(4+1+2)×v(1+3+3)=-35u7v7

Question 16:

 Find the products:

(ab2) × (−b2c) × (−a2c3) × (−3abc)

Answer 16:

=(-3×-1×-1)×(a×a2×a×b2×b2×b×c×c3×c=-3×a(1+2+1)×b(2+2+1)×c(1+4+1)=-3a4b5c5

Question 17:

 Find the products:

43x2yz×13y2zx×-6xyz2

Answer 17:

=(43×13×(-6))×(x2×x×x×y×y2×y×z×z×z2)=-83×x(2+1+1)×y(1+2+1)×z(1+1+2)=-83x4y4z4

Question 18:

Multiply -23a2b by65a3b2 and verify your result for a = 2 and b = 3.

Answer 18:

-23a2b×65a3b2=(-23×65)×(a2×a3×b×b2)=-45×a(2+3)×b(1+2)=-45a5b3


When a =2 and b =3, we get:

-23a2b = -23×22×3 = -865a3b2= 65×23×32 = 4325L.H.S.=-23a2b ×65a3b2 = -8×4325=-34565R.H.S. = -45a5b3=-45×25×33 = -34565

L.H.S. = R.H.S.

Hence, the result is verified.

Question 19:

Multiply -821x2y3 by-716xy2 and verify your result for x = 3 and y = 2.

Answer 19:

-821x2y3 × -716xy2 = -821×-716x2+1y3+2 = 16×x3×y5 When x=3 and y=2, we get:L.H.S.= -821x2y3 ×-716xy2 = -1927×-214= 144R.H.S. = 16x3y5= 16×33×25 = 144L.H.S.= R.H.S.  -821x2y3 ×-716xy2 = 16x3y5

Question 20:

Find the value of (2.3a5b2) × (1.2a2b2), when a = 1 and b = 0.5.

Answer 20:

=(2.3×1.2)×(a5×a2×b2×b2)=2.76×a(5+2)×b(2+2)=2.76a7b4When a = 1 and b= 0.5, we get: 2.76a7b4 = 2.76×17×0.54 = 0.1725

Question 21:

Find the value of (−8u2v6) × (−20uv) for u = 2.5 and v = 1.

Answer 21:

=(-8×(-20))×(u2×u×v6×v)= 160×u(2+1)×v(6+1)=160u3v7 160u3v7 = 160×2.53×17 = 2500

Page-103

Question 22:

Find the product and verify the result for a = 1, b = 2 and c = 3.

25a2b×-15b2ac×-12c2

Answer 22:

=(25×-15×-12)×(a2×a×b×b2×c×c2)=3×a(2+1)×b(1+2)×c(1+2)=3a3b3c3When a = 1, b = 2 and c = 3, we get:25a2b = 25×12×2= 45-15b2ac = -15×22×1×3= -180-12c2 = -12×32 = -92L.H.S.= 25a2b×-15b2ac×-12c2 = 45×-180×-92 = 648R.H.S.= 3a3b3c3 = 3×13×23×33= 648L.H.S.= R.H.S.  25a2b×-15b2ac×-12c2 =3a3b3c3 

Question 23:

Find the product and verify the result for a = 1, b = 2 and c = 3.

14abc×-6b2c×-13c3

Answer 23:

=(14×-6×-13)×(a×b×b2×c×c×c3)=12×a×b(1+2)×c(1+1+3)=12ab3c5When a =1, b = 2 and c = 3, we get:14abc = 14×1×2×3 = 32-6b2c = -6 ×22×3 = -72-13c3= -13×33=-9L.H.S.= 14abc ×-6b2c ×-13c3 = 32×-72×-9 = 972R.H.S. = 12ab3c5 = 12×1×23×35= 972L.H.S. = R.H.S.14abc ×-6b2c ×-13c3 = 12ab3c5

Question 24:

Find the product and verify the result for a = 1, b = 2 and c = 3.

49abc3×-275a3b2×-8b3c

Answer 24:

=(49×-275×-8)×(a×a3×b×b2×b3×c3×c)=965×a(1+3)×b(1+2+3)×c(3+1)=965a4b6c4When a=1, b=2 and c=3:L.H.S.: (49×-275×-8)×(a×a3×b×b2×b3×c3×c) =  (49×-275×-8)×1×13×2×22×23×33×3= 4976645R.H.S.: 965a4b6c4 = 96514×26×34 = 4976645L.H.S. = R.H.S.Hence, verified.

Question 25:

Find the product and verify the result for a = 1, b = 2 and c = 3.

-47a2b×-23b2c×-76c2a

Answer 25:

=(-47×-23×-76)×(a2×a×b×b2×c×c2)=-49a(2+1)×b(1+2)×c(1+2)=-49a3b3c3L.H.S.: (-47×-23×-76)×(12×1×2×22×3×32)= -96R.H.S.: -49×13×23×33  =  -96L.H.S. = R.H.S. Hence, verified.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *