RS Aggarwal 2019,2020 solution class 7 chapter 5 Exponents Exercise 5C

Exercise 5C

Page-93

Question 1:

Mark (✓) against the correct answer
(6−1 − 8−1)−1=?

(a) -12
(b) −2
(c) 124
(d) 24

Answer 1:

(d) 24

6-1-8-1-1=16-18-1
                  = 4-324-1        [since L.C.M. of 6 and 8 is 24]
                  = 124-1
                  = 2411=24      since ab-1=ba1


Question 2:

Mark (✓) against the correct answer
(5−1 × 3−1)−1=?

(a) 115
(b) -115
(c) 15
(d) −15

Answer 2:

(c) 15

We have:

5-1×3-1-1=15×13-1
                      = 115-1      
                      = 1511=15      since ab-1=ba1


Question 3:

Mark (✓) against the correct answer

(2−1 − 4−1)2 = ?

(a) 4
(b) −4
(c) 116
(d) -116

Answer 3:

(c) 116

We have:

2-1-4-12=12-142
                   = 2-142        [since L.C.M. of 2 and 4 is 4]
                   = 142
                   = 14×14=116     


Question 4:

Mark (✓) against the correct answer

12-2+13-2+14-2=?

(a) 61144
(b) 29
(c) 14461
(d) none of these

Answer 4:

(b) 29

We have:

12-2+13-2+14-2=212+312+412          sinceab-1=ba1
                                 = (22 + 32 + 42)
                                 = (4 + 9 + 16)
                                 = 29
Page-94


Question 5:

Mark (✓) against the correct answer

6-1+32-1-1=?

(a) 23
(b) 56
(c) 65
(d) none of these

Answer 5:

(c) 65

We have:
6-1+32-1-1=16+23-1
                             = 1+46-1    [since L.C.M. of 3 and 6 is 6]
                             = 56-1        
                             = 651=65             sinceab-1=ba1


Question 6:

Mark (✓) against the correct answer

-12-6=?

(a) −64
(b) 64
(c) 164
(d) -164

Answer 6:

(b) 64
We have:
-12-6=2-16                            since ab-n=ban
                =-26=-2×-2×-2×-2×-2×-2 = 64


Question 7:

Mark (✓) against the correct answer

34-1-14-1-1=?

(a) 38
(b) -38
(c) 83
(d) -83

Answer 7:

(b)  -38

34-1-14-1-1=43-41-1
                                  = 4-123-1     [ since L.C.M. of 1 and 3 is 3]
                                  = -83-1
                                  = 3-81                      since ab-1=ba1
                                  = 3×-1-8×-1=-38


Question 8:

Mark (✓) against the correct answer

-122-2-1=?

(a) 116
(b) 16
(c) -116
(d) −16

Answer 8:

(a) 116

-122-2-1=-122×-2-1                           sinceabmn=abmn
                          =-12-4-1
                           =-12-4×-1=-124=-1424=116


Question 9:

Mark (✓) against the correct answer
560=?

(a) 65
(b) 0
(c) 1
(d) none of these

Answer 9:

(c) 1

(a)0 = 1
560=1


Question 10:

Mark (✓) against the correct answer
23-5=?

(a) 32243
(b) 24332
(c) -32243
(d) -24332

Answer 10:

(b) 24332

23-5=325                                                    since ab-n=ban
     
         = 3525=3×3×3×3×32×2×2×2×2=24332


Question 11:

Mark (✓) against the correct answer
1324=?

(a) 136
(b) 138
(c) 1316
(d) 1324

Answer 11:

(b) 138

1324=132×4=138                  sinceabmn=abmn


Question 12:

Mark (✓) against the correct answer
-32-1=?

(a) 23
(b) -23
(c) 32
(d) none of these

Answer 12:

(b) -23
We have:
-32-1=2-31       since ab-n= ban
               = -23


Question 13:

Mark (✓) against the correct answer
32-22×23-3=?

(a) 458
(b) 845
(c) 8135
(d) 1358

Answer 13:

(d) 1358

32-22×23-3=9-4×323         since ab-1=ba1
                             =5×33235×278 = 1358


Question 14:

Mark (✓) against the correct answer
13-3-12-3÷14-3=?

(a) 1964
(b) 6419
(c) 2716
(d) none of these

Answer 14:

(a) 1964
We have:
13-3-12-3÷14-3 = 313- 213 ÷ 413                               since ab-1=ba1
                                             = 33-23÷43
                                             = 27 - 8 ÷ 64
                                             = 19 ÷ 64
                                             = 19×164=1964
Page-95

Question 15:

Mark (✓) against the correct answer
-153÷-158=?

(a) -155
(b) -1511
(c) (−5)5
(d) 155

Answer 15:

(c) (-5)5

We have:
-153÷-158=-153-8               since am÷an=am-n          
                             = -15-5 
                            =5-15                  Since ab-1=ba1
                            =5×-1-1×-15=-515=-55
                                

Question 16:

Mark (✓) against the correct answer
-257÷-255=?

(a) 425
(b) -425
(c) -2512
(d) 254

Answer 16:

(a) 425

-257÷-255=-257-5            since am÷an=am-n
                            =-252
                             = -2252=425

Question 17:

Mark (✓) against the correct answer
-232=?

(a) 43
(b) -29
(c) 49
(d) -49

Answer 17:

(c) 49

-232=-23×-23=49

Question 18:

Mark (✓) against the correct answer
-123=?

(a) -32
(b) -18
(c) -16
(d) none of these

Answer 18:

(b) -18
We have:
-123=-12×-12×-12=-18

Question 19:

Mark (✓) against the correct answer
If 53-5×5311=538x, then x = ?

(a) -12
(b) -34
(c) 34
(d) 43

Answer 19:

(c) 34

53-5×5311=538x
53-5+11=538x        [ since am×an=am+n]
536=538x
 On equating the coefficients:
  6 = 8x
  ∴ x = 68=34

Question 20:

Mark (✓) against the correct answer
By what number should (−8)−1 be multiplied to get 10−1?

(a) 45
(b) -54
(c) -45
(d) none of these

Answer 20:

(c) -45
Let the required number be x.
(−8)-1 x x = (10)-1
⇒ 1-8×x=110
x = 110×(-8) = -45
Hence, the required number is -45.

Question 21:

Mark (✓) against the correct answer
Which of the following numbers is in standard form?

(a) 21.56 × 105
(b) 215.6 × 104
(c) 2.156 × 106
(d) none of these

Answer 21:

(c) 2.156 × 106
A given number is said to be in standard form if it can be expressed as k x 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.
For example: 2.156 × 106

No comments:

Post a Comment

Contact Form

Name

Email *

Message *