Loading [MathJax]/jax/output/HTML-CSS/jax.js

RS Aggarwal 2019,2020 solution class 7 chapter 5 Exponents Exercise 5C

Exercise 5C

Page-93

Question 1:

Mark (✓) against the correct answer
(6−1 − 8−1)−1=?

(a) -12
(b) −2
(c) 124
(d) 24

Answer 1:

(d) 24

(6-1-8-1)-1=(16-18)-1
                  = (4-324)-1        [since L.C.M. of 6 and 8 is 24]
                  = (124)-1
                  = (241)1=24      [since (ab)-1=(ba)1]


Question 2:

Mark (✓) against the correct answer
(5−1 × 3−1)−1=?

(a) 115
(b) -115
(c) 15
(d) −15

Answer 2:

(c) 15

We have:

(5-1×3-1)-1=(15×13)-1
                      = (115)-1      
                      = (151)1=15      [since (ab)-1=(ba)1]


Question 3:

Mark (✓) against the correct answer

(2−1 − 4−1)2 = ?

(a) 4
(b) −4
(c) 116
(d) -116

Answer 3:

(c) 116

We have:

(2-1-4-1)2=(12-14)2
                   = (2-14)2        [since L.C.M. of 2 and 4 is 4]
                   = (14)2
                   = (14×14)=116     


Question 4:

Mark (✓) against the correct answer

(12)-2+(13)-2+(14)-2=?

(a) 61144
(b) 29
(c) 14461
(d) none of these

Answer 4:

(b) 29

We have:

(12)-2+(13)-2+(14)-2=(21)2+(31)2+(41)2          [since(ab)-1=(ba)1]
                                 = (22 + 32 + 42)
                                 = (4 + 9 + 16)
                                 = 29
Page-94


Question 5:

Mark (✓) against the correct answer

{6-1+(32)-1}-1=?

(a) 23
(b) 56
(c) 65
(d) none of these

Answer 5:

(c) 65

We have:
{6-1+(32)-1}-1=(16+23)-1
                             = (1+46)-1    [since L.C.M. of 3 and 6 is 6]
                             = (56)-1        
                             = (65)1=(65)             [since(ab)-1=(ba)1]


Question 6:

Mark (✓) against the correct answer

(-12)-6=?

(a) −64
(b) 64
(c) 164
(d) -164

Answer 6:

(b) 64
We have:
(-12)-6=(2-1)6                            [since (ab)-n=(ba)n]
                =(-2)6=(-2)×(-2)×(-2)×(-2)×(-2)×(-2) = 64


Question 7:

Mark (✓) against the correct answer

{(34)-1-(14)-1}-1=?

(a) 38
(b) -38
(c) 83
(d) -83

Answer 7:

(b)  -38

{(34)-1-(14)-1}-1=(43-41)-1
                                  = (4-123)-1     [ since L.C.M. of 1 and 3 is 3]
                                  = (-83)-1
                                  = (3-8)1                      [since (ab)-1=(ba)1]
                                  = (3×-1-8×-1)=-38


Question 8:

Mark (✓) against the correct answer

[{(-12)2}-2]-1=?

(a) 116
(b) 16
(c) -116
(d) −16

Answer 8:

(a) 116

[{(-12)2}-2]-1=[(-12)2×-2]-1                           [since{(ab)m}n=(ab)mn]
                          =[(-12)-4]-1
                           =(-12)(-4)×(-1)=(-12)4=(-1)4(2)4=116


Question 9:

Mark (✓) against the correct answer
(56)0=?

(a) 65
(b) 0
(c) 1
(d) none of these

Answer 9:

(c) 1

(a)0 = 1
(56)0=1


Question 10:

Mark (✓) against the correct answer
(23)-5=?

(a) 32243
(b) 24332
(c) -32243
(d) -24332

Answer 10:

(b) 24332

(23)-5=(32)5                                                    [since (ab)-n=(ba)n]
     
         = 3525=3×3×3×3×32×2×2×2×2=24332


Question 11:

Mark (✓) against the correct answer
{(13)2}4=?

(a) (13)6
(b) (13)8
(c) (13)16
(d) (13)24

Answer 11:

(b) (13)8

{(13)2}4=(13)2×4=(13)8                  [since{(ab)m}n=(ab)mn]


Question 12:

Mark (✓) against the correct answer
(-32)-1=?

(a) 23
(b) -23
(c) 32
(d) none of these

Answer 12:

(b) -23
We have:
(-32)-1=(2-3)1       [since (ab)-n= (ba)n]
               = -23


Question 13:

Mark (✓) against the correct answer
(32-22)×(23)-3=?

(a) 458
(b) 845
(c) 8135
(d) 1358

Answer 13:

(d) 1358

(32-22)×(23)-3=(9-4)×(32)3         [since (ab)-1=(ba)1]
                             =5×33235×278 = 1358


Question 14:

Mark (✓) against the correct answer
{(13)-3-(12)-3}÷(14)-3=?

(a) 1964
(b) 6419
(c) 2716
(d) none of these

Answer 14:

(a) 1964
We have:
{(13)-3-(12)-3}÷(14)-3 = {(31)3- (21)3} ÷ (41)3                               [since (ab)-1=(ba)1]
                                             = {(33)-(2)3}÷(4)3
                                             = (27 - 8) ÷ 64
                                             = 19 ÷ 64
                                             = 19×164=1964
Page-95

Question 15:

Mark (✓) against the correct answer
(-15)3÷(-15)8=?

(a) (-15)5
(b) (-15)11
(c) (−5)5
(d) (15)5

Answer 15:

(c) (-5)5

We have:
(-15)3÷(-15)8=(-15)3-8               [since am÷an=am-n]          
                             = (-15)-5 
                            =(5-1)5                  [Since (ab)-1=(ba)1]
                            =(5×-1-1×-1)5=(-51)5=(-5)5
                                

Question 16:

Mark (✓) against the correct answer
(-25)7÷(-25)5=?

(a) 425
(b) -425
(c) (-25)12
(d) 254

Answer 16:

(a) 425

(-25)7÷(-25)5=(-25)7-5            [since am÷an=am-n]
                            =(-25)2
                             = (-2)2(5)2=425

Question 17:

Mark (✓) against the correct answer
(-23)2=?

(a) 43
(b) -29
(c) 49
(d) -49

Answer 17:

(c) 49

(-23)2=-23×-23=49

Question 18:

Mark (✓) against the correct answer
(-12)3=?

(a) -32
(b) -18
(c) -16
(d) none of these

Answer 18:

(b) -18
We have:
(-12)3=-12×-12×-12=-18

Question 19:

Mark (✓) against the correct answer
If (53)-5×(53)11=(53)8x, then x = ?

(a) -12
(b) -34
(c) 34
(d) 43

Answer 19:

(c) 34

(53)-5×(53)11=(53)8x
(53)-5+11=(53)8x        [ since am×an=am+n]
(53)6=(53)8x
 On equating the coefficients:
  6 = 8x
  ∴ x = 68=34

Question 20:

Mark (✓) against the correct answer
By what number should (−8)−1 be multiplied to get 10−1?

(a) 45
(b) -54
(c) -45
(d) none of these

Answer 20:

(c) -45
Let the required number be x.
(−8)-1 x x = (10)-1
⇒ 1-8×x=110
x = 110×(-8) = -45
Hence, the required number is -45.

Question 21:

Mark (✓) against the correct answer
Which of the following numbers is in standard form?

(a) 21.56 × 105
(b) 215.6 × 104
(c) 2.156 × 106
(d) none of these

Answer 21:

(c) 2.156 × 106
A given number is said to be in standard form if it can be expressed as k x 10n, where k is a real number such that 1 ≤ k < 10 and n is a positive integer.
For example: 2.156 × 106

No comments:

Post a Comment

Contact Form

Name

Email *

Message *