RS Aggarwal 2019,2020 solution class 7 chapter 5 Exponents Exercise 5A

Exercise 5A

Page-90

Question 1:

Write each of the following in power notation:

(i) 57×57×57×57
(ii) -43×-43×-43×-43×-43
(iii) -16×-16×-16
(iv) (−8) × (−8) × (−8) × (−8) × (−8)

Answer 1:

(i) 57×57×57×57 = 574

(ii) -43×-43×-43×-43×-43=-435

(iii) -16×-16×-16=-163

(iv) -8×-8×-8×-8×-8=-85

Page-91

Question 2:

Express each of the following in power notation:

(i) 2536
(ii) -2764
(iii) -32243
(iv) -1128

Answer 2:

(i) 2536=5262                               [since 25 = 52 and 36 = 62]
          =562

(ii) -2764=-3343                     [since −27 = (−3)3 and 64 = 43]

              =-343

(iii) -32243=-2535                   [since −32 = (−2)5 and 243 = 35]
               =-235

(iv) -1128=-1727                    [since (−1)7 = −1 and 128 = 27]
              =-127

Question 3:

Express each of the following as a rational number:

(i) 235
(ii) -853
(iii) -13112
(iv) 163
(v) -125
(vi) -324
(vii) -473
(viii) (−1)9

Answer 3:

(i) 235=2535=2×2×2×2×23×3×3×3×3=32243

(ii) -853=-8353=-8×-8×-85×5×5=-512125

(iii) -13112=-132112=-13×-1311×11=169121

(iv) 163=1363=1×1×16×6×6=1216

(v) -125=-1525=-1×-1×-1×-1×-12×2×2×2×2=-132

(vi) -324=-3424=-3×-3×-3×-32×2×2×2=8116

(vii) -473=-4373=-4×-4×-47×7×7=-64343

(viii) -19=-1       [Since (-1) an odd natural number = -1]

Question 4:

Express each of the following as a rational number:

(i) (4)−1
(ii) (−6)−1
(iii) 13-1
(iv) -23-1

Answer 4:

(i) 4-1=41-1=141=14                                 [since ab-n=ban]

(ii) -6-1=-61-1=1-61=-16                    [since ab-n=ban]

(iii) 13-1=311=31                                           [since ab-n=ban]

(iv) -23-1=3-21=-32                                  [since ab-n=ban]
                     

Question 5:

Find the reciprocal of each of the following:

(i) 384
(ii) -5611
(iii) 67
(iv) (−4)3

Answer 5:

We know that the reciprocal of abm is bam.

(i) Reciprocal of 384=834

(ii) Reciprocal of -5611=-6511

(iii) Reciprocal of 67 = Reciprocal of 617= 167

(iv) Reciprocal of (− 4)3 = Reciprocal of -413 = -143

Question 6:

Find the value of each of the following:

(i) 80
(ii) (−3)0
(iii) 40 + 50
(iv) 60 × 70

Answer 6:

(i) 80 = 1
(ii) (−3)0 = 1
(iii) 40 + 50 = 1 + 1 = 2
(iv) 60 × 70 = 1 × 1 = 1

Note: a0 = 1

Question 7:

Simplify each of the following and express each as a rational number:

(i) 324×152
(ii) -235×-373
(iii) -125×23×352
(iv) 232×-353×722
(v) -343--523×42

Answer 7:

(i) 324×152=3424×1252=81×116×25=81400

(ii) -235×-373=-2535×-3373
                                  = =-2573×-13335=-32×-1×33-5343=-32×-1×3-2343=-32×-1×1343×9=323087               since 3-2=19

                                
(iii) -125×23×342=-1525×23×3242
                                       =-1525×23×32(22)2
                                       =-1×23×3225×24
                                       =-1×23×3229 =-1×23-9×32  = -9×2-6=-926=-964                  since ab-1=ba1

(iv) 232×-353×722=2232×-3353×7222
                                             -1×33-2×7253=-1×31×7253=-1×3×49125=-147125

(v) -343--523×42=-3343--5323×42
                                             =-2764--1258×16
                                             =-2764+1258×16
                                             =-27+100064×16
                                              =97364×16=9734

Question 8:

Simplify and express each as a rational number:

(i) 496×49-4
(ii) -78-3×-782
(iii) 43-3×43-2

Answer 8:

(i) 496×49-4=496+-4                                             since an×am=an+m
                        =  4924292=4×49×9=1681

(ii) -78-3×-782=-78-3+2                                  since an×am=an+m
                             = -78-1            
                              =  8-71                                          since ab-1= ba1
                              = 8×-1-7×-1=-87

(iii) 43-3×43-2=43-3+-2                                    since an×am= an+m
                           = 43-5
                           = 345                                                since ab-1=ba1
                          = 3545=3×3×3×3×34×4×4×4×4=2431024

Question 9:

Express each of the following as a rational number:

(i) 5−3
(ii) (−2)−5
(iii) 14-4
(iv) -34-3
(v) -3-1×13-1
(vi) 57-1×74-1
(vii) (5−1−7−1)−1
(viii) 43-1-14-1-1
(ix) 32-1÷-25-1
(x) 23250

Answer 9:

Note: ab-1=ba1


(i) 5−3 = 51-3=153=1353=1125


(ii) (−2)−5 = -21-5=1-25=15-25=1×-1-32×-1=-132


(iii) 14-4=414=4414=2561=256


(iv) -34-3=4-33 = 43-33=64-27=64×-1-27×-1=-6427


(v) -3-1×13-1=1-31×311=1×3-3×11=3-31=1-1=1×-1-1×-1=-11=-1


(vi) 57-1×74-1=751×471=7×45×71=45


(vii) 5-1-7-1-1=15-17-1=7-535-1
                                                     = 235-1=3521=352

(viii) 43-1-14-1-1 = 341-411-1=34-41-1
                                                               = 3-164-1=-134-1= 4-131=4×-1-13×-1= -413

(ix) 32-1÷-25-1=231÷5-21
                                 =23×-25=-415

(x) 23250=1          [since a0 = 1 for every integer a]

Question 10:

Simplify:

(i) -142-2-1
(ii) -2323
(iii) -323÷-326
(iv) -237÷-234

Answer 10:

(i)

-142-2-1=-142×-2-1                 since abmn=abmn
                          =-14-4-1
                           =-14-4×-1=-144=-1444=1256

(ii)

-2323=-232×3                               since abmn=abmn
                  = -236
                  = -2636=64729                      [since (−2)6 = 64 and (3)6 = 729]

(iii)

-323÷-326=-323-6                    since am÷an=am-n          
                             = -32-3 
                            =2-33                      since ab-1=ba1
                            =2×-1-3×-13=-233=-2333=-827

(iv)

-237÷-234=-237-4                   since am÷an=am-n
                            =-233
                             = -2333=-827

Question 11:

By what number should (−5)−1 be multiplied so that the product is (8)−1?

Answer 11:

Let the required number be x.
(−5)-1 × x = (8)-1
1-5× x=18
x = 18×-5 = -58
Hence, the required number is -58.

Question 12:

By what number should 3−3 be multiplied to obtain 4?

Answer 12:

Let the required number be x.
(3)-3 x x = 4
133×x=4
127×x=4
x = 4 x 27 = 108
Hence, the required number is 108.

Question 13:

By what number should (−30)−1 be divided to get 6−1?

Answer 13:

Let the required number be x.
(-30)-1 ÷ x = 6-1
1-30×1x=16
1-30x=16
x = 6-30=1-5
                       =-15
Hence, the required number is -15.

Question 14:

Find x such that 353×35-6=352x-1.

Answer 14:

353×35-6=352x-1
353+(-6)=352x-1      since am×an=am+n
35-3=352x-1
On equating the exponents:
−3 = 2x − 1
⇒ 2x = −3 + 1
⇒ 2x   = −2
x = -22=-1

Question 15:

Simplify: 35×105×2557×65.

Answer 15:

35×105×2557×65=35×2×55×5257×2×35
                        =35×25×55×5257×25×35
                        =35×25×5735×25×57=35-5×25-5×57-7=30×20×50=1×1×1=1

Page-92

Question 16:

Simplify: 16×2n+1-4×2n16×2n+2-2×2n+2.

Answer 16:

    16×2n+1-4×2n16×2n+2-2×2n+2
24×2n+1-22×2n24×2n+2-2n+1×22
22×2n+3-2n22×2n+4-2n+1
2n×23-2n2n×24-2n×2
2n23-12n24-2=8-116-2=714=12

Question 17:

Find the value of n when:

(i) 52n × 53 = 59
(ii) 8 × 2n+2 = 32
(iii) 62n+1 ÷ 36 = 63

Answer 17:

(i) 52n × 53 = 59
     52n+3 = 59          [since an × am = am+n]

     On equating the coefficients:
     2n + 3 = 9
     ⇒ 2n = 9 − 3
     ⇒ 2n = 6
     ∴ n =62=3

(ii) 8 × 2n+2 = 32
     ⇒ (2)3 × 2n+2 = (2)5      [since 23 = 8 and 25 = 32]
     ⇒ (2)3+ (n+2) = (2)5 
     On equating the coefficients:
      3 + n + 2 = 5
      ⇒ n + 5 = 5
      ⇒ n = 5 − 5
      ∴ n = 0

(iii) 62n+1 ÷ 36 = 63
       ⇒ 62n+1 ÷ 62 = 63       [since 36 = 62]
       ⇒ 62n+162=63
       ⇒ 62n+1-2=63          [since aman=am-n ]
       ⇒ 62n-1 = 63
        On equating the coefficients:
        2n - 1 = 3
        ⇒ 2n = 3 + 1
        ⇒ 2n = 4
         ∴ n = 42=2

Question 18:

If 2n−7 × 5n−4 = 1250, find the value on n.

Answer 18:

    2n-7×5n-4=1250
2n27×5n54=2×54                       [since 1250 = 2 × 54]
2n×5n27×54=2×54
⇒  2n×5n=2×54×27×54           [using cross multiplication]
⇒  2n×5n=21+7×54+4               [since am × an = am+n ]
2n×5n=28×58
2×5n=2×58                      [since an × bn = (a × b)n ]
10n=108
n = 8

No comments:

Post a Comment

Contact Form

Name

Email *

Message *