RS Aggarwal 2019,2020 solution class 7 chapter 4 Rational Numbers Exercise 4A

Exercise 4.1

Page-60

Question 1:

What are rational numbers? Give examples of five positive and five negative rational numbers. Is there any rational number which is neither positive nor negative? Name it.

Answer 1:

The numbers that are in the form of  pq, where p and q are integers and q ≠0, are called rational numbers.

For example: 

Five positive rational numbers:

57,34,78,1415,59

Five negative rational numbers:

 37,38,89,1925,825

Yes, there is a rational number that is neither positive nor negative, i.e. zero (0).   

Question 2:

Which of the following are rational numbers?

(i) 5-8
(ii) -611
(iii) 715
(iv) -8-12
(v) 6
(vi) −3
(vii) 0
(viii) 01
(ix) 10
(x) 00

Answer 2:

i) 58 is a rational number because it is in the form of   pq, where p and q are integers and q≠0. ii)611 is a rational number because it is in the form of   pq, where p and q are integers and q≠0. iii)1315is a rational number because it is in the form of   pq, where p and q are integers and q≠0. iv)812is a rational number because it is in the form of   pq, where p and q are integers and q0. v) 6  is a rational number because it is in the form of  pq, where p and q are integers and q0. vi) -3 is a rational number because it is in the form of  pq, where p and q are integers and q0. vii) 0 = 01is a rational number because it is in the form of pq, where p and q are integers and q0. viii)01 is a rational number because it is in the form of   pq, where p and q are integers and q0. ix)10is not a rational number because, here, q = 0.x)00 is not a rational number because, here, q = 0.      

Question 3:

Write down the numerator and the denominator of each of the following rational numbers:

(i) 819
(ii) 5-8
(iii) -1315
(iv) -8-11
(v) 9

Answer 3:

(i) 819
Numerator = 8

Denominator =19

(ii)5-8
Numerator  = 5

Denominator = −8

(iii) -135

Numerator = −13
Denominator =15

(iv)-8-11

Numerator = −8
Denominator = −11

(v) 9
i.e 91
Numerator = 9
Denominator = 1

Question 4:

Write each of the following integers as a rational number. Write the numerator and the denominator in each case.

(i) 5
(ii) −3
(iii) 1
(iv) 0
(v) −23

Answer 4:

(i) 5
The rational number will be 51.
Numerator = 5
Denominator = 1

 
(ii) -3
The rational number will be -31.
Numerator   = -3
Denominator = 1

(iii)1
The rational number will be 11.
Numerator = 1
Denominator = 1

(iv) 0
The rational number will be 01.
Numerator =0
Denominator = 1

(v) -23
The rational number will be -231.
Numerator = -23
Denominator = 1

Question 5:

Which of the following are positive rational numbers?

(i) 3-5
(ii) -1115
(iii) -5-8
(iv) 3753
(v) 03

Answer 5:

Positive rational numbers:
(iii) -5-8

(iv) 3753
(vi) 8 because 8 can be written as 81, where 10.

0 is neither positive nor negative.

Question 6:

Which of the following are negative rational numbers?

(i) -15-14
(ii) 0
(iii) -57
(iv) 4-9
(v) −6
(vi) 1-2

Answer 6:

Negative rational numbers:

(iii) -57

(iv) 4-9

(v)  -6

(vi) 1-2

Question 7:

Find four rational numbers equivalent to each of the following.

(i) 611
(ii) -38
(iii) 7-15
(iv) 8
(v) 1
(vi) −1

Answer 7:

(i) Following are the four rational numbers that are equivalent to 611.
6×211×2,6×311×3,6×411×4 and 6×511×5i.e. 1222,1833,2444 and 3055

(ii) Following are the four rational numbers that are equivalent to -38.
-3×28×2,
-3×38×3-3×48×4 and -3×58×5
 
  i.e. -616-924-1232 and -1540

(iii) Following are the four rational numbers that are equivalent to 7-15.
7×215×2, 7×315×3, 7×415×4 and 7×515×5i.e14302145, 2860 and 3575

(iv) Following are the four rational numbers that are equivalent to 8, i.e. 81.
8×21×2, 8×31×3, 8×41×4 and 8×51×5i.e. 162, 243, 324 and  405

(v) Following are the four rational numbers that are equivalent to ­­-1, i.e. 11.
1×21×2, 1×31×3, 1×41×4 and  1×51×5i.e. 22,33, 44 and 55
(vi)
Following are the four rational numbers that are equivalent to ­­-1, i.e. -11.
1×21×2, 1×31×3, 1×41×4 and 1×51×5i.e. 22,33, 44 and 55

 

Page-61

Question 8:

Write each of the following as a rational number with positive denominator.

(i) 12-17
(ii) 1-2
(iii) -8-19
(iv) 11-6

Answer 8:

(i) 12×(1)(17)×(1)=1217

(ii) 1×(1)(2)×(1)=12

(iii) 819=8×(1)(19)×(1)=819

(iv) 11×(1)-6×(1)=116

Question 9:

Express 58 as a rational number with numerator

(i) 15
(ii) −10

Answer 9:

(i) Numerator of  58  is 5.
5 should be multiplied by 3 to get 15.
Multiplying both the numerator and the denominator by 3:

5×38×3=1524 58=1524

(ii)  Numerator of  58  is 5.
5 should be multiplied by −2 to get −10.
Multiplying both the numerator and the denominator by −2:

5×(2)8×(2)=1016 58=1016

Question 10:

Express 47 as a rational number with denominator
(i) 21
(ii) −35

Answer 10:

(i) Denominator of 47 is 7.
7 should be multiplied by 3 to get 21.
Multiplying both the numerator and the denominator by 3:

4×37×31221

4×37×347 

(ii) 
Denominator of 47 is 7. 
7 should be multiplied by -5 to get −35.
Multiplying both the numerator and the denominator by 5:

4×(5)7×(5)=2035 47=2035

Question 11:

Express -1213 as a rational number with numerator
(i) −48
(ii) 60

Answer 11:

(i) Numerator of -1213 is −12.
−12 should be multiplied by 4 to get 48.
Multiplying both the numerator and the denominator by 4
:

12×413×4=48521213=4852

(ii) 
Numerator of -1213 is −12.​
12 should be multiplied by 5 to get 60

 Multiplying its numerator and denominator by -5:

12×(5)13×(5)=60651213=6065

Question 12:

Express -811 as a rational number with denominator

(i) 22
(ii) −55

Answer 12:

(i) Denominator of-811  is 11.
Clearly, 11×2= 22

Multiplying both the numerator and the denominator by 2:

8×211×2=1622811=1622

(ii) 
Denominator of-811  is 11.
Clearly, 11×5=55

Multiplying both the numerator and the denominator by 5:

8×511×5=4055 811=4055

Question 13:

Express 14-5 as a rational number with numerator

(i) 56
(ii) −70

Answer 13:

(i) Numerator of 14-5 is 14.
Clearly, 14×4=56

Multiplying both the numerator and the denominator by 4:

14×45×4=5620


14-5=5620

(ii) −70
Numerator of 14-5 is 14.​
Clearly, 14×(−5)=−70
Multiplying both the numerator and the denominator by -5:

14×(5)(5)×(5)=7025

14-5=​7025

Question 14:

Express 13-8 as a rational number with denominator

(i) −40
(ii) 32

Answer 14:

(i) Denominator of 13-8 is −8.
Clearly, (
−8)×5= −40
Multiplying both the numerator and the denominator by 5:
13×58×5=6540138=6540


(ii) Denominator of 13-8 is −8.
Clearly, (−8)×(
−4)= 32

Multiplying both the numerator and the denominator by −4:

13×(4)8×(4)=5232

 13-8=5232

Question 15:

Express -3624 as a rational number with numerator

(i) −9
(ii) 6

Answer 15:

(i) Numerator of  -3624 is -36.

Clearly, (−36) ÷ 4= (−9)
Dividing both the numerator and the denominator by 4:

 36÷424÷4=96

(ii)
Numerator of  -3624 is −36.​
Clearly, (−36) ÷ ( −6) = 6
Dividing both the numerator and the denominator by -6:

36÷(6)24÷(6)=6-4


-36246-4

Question 16:

Express 84-147 as a rational number with denominator

(i) 7
(ii) −49

Answer 16:

(i) Denominator of 84-147 is 147.
∴ −147 ÷(−21)=7
Dividing both the numerator and the denominator by -21:

84÷(21)147÷(21)=4784147=47

(ii)
Denominator of 
84-147 is 147.
 −147÷3=−49
Dividing both the numerator and the denominator by 3:

  84÷3147÷3=2849

 84147=2849

Question 17:

Write each of the following rational numbers in standard form:

(i) 3549
(ii) 8-36
(iii) -2745
(iv) -14-49
(v) 91-78
(vi) -68119
(vii) -87116
(viii) 299-161

Answer 17:

(i) 3549
H.C.F. of 35 and 49 is 7.

Dividing the numerator and the denominator by 7:


35÷749÷7=57
So, 
3549 is equal to 57 in the standard form.

(ii)8-36
Denominator is -36, which is negative.
Multiplying both the numerator and the denominator by -1:

8×(-1)-36×(-1)=-836


H.C.F. of 8 and 36 is 4
.
Dividing its numerator and denominator by 4:

-8÷436÷4=-29

So, 8-36 is equal to -29 in the standard form.

(iii) -2745


H.C.F. of 27 and 45 is 9.

Dividing its numerator and denominator by 9:
27÷945÷9=35
Hence, 2745 is equal to -35 in the standard form.

(iv) -14-49The denominator is negative. Multiplying its numerator and denominator by -1:-14×(-1)-49×(-1)=1449


H.C.F. of 14 and 49 is 7.
Dividing both the numerator and the denominator by 7.
14÷749÷7=27Hence, -14-49  is equal to 27 in the standard form. 

(v) 91-78The denominator is negative. Multiplying its denominator and denominator by -1:91×(-1)-78×(-1)=-9178


H.C.F. of 91 and 78 is 13.
Dividing both the numerator and the denominator by 13:
-91÷1378÷13=-76Hence, 91-78 is equal to -76 in the standard form. 

 (vi) -68119


H.C.F. of 68 and 119 is 17.
Dividing both the numerator and the denominator by 17:
-68÷17119÷17=-47Hence, -68119 is equal to -47 in the standard form. 

(vii) -87116


H.C.F. of 87 and 116 is 29.
Dividing both the numerator and the denominator by 29:
-87÷29116÷29=-34Hence, -87116 is equal to -34in the standard form. 

(viii) 299-161
The denominator is negative.
Multiplying both the numerator and denominator by -1:

299×(-1)-161×(-1) =-299161


H.C.F. of 299 and 161 is 23.
Dividing both the numerator and the denominator by 23:
-299÷23161÷23=-137Hence, 299-161 is equal to -137in the standard form. 

Question 18:

Fill in the blanks:

(i) -95=......20=27......=-45......
(ii) -611=-18......=......44

Answer 18:

(i)

 9×45×4=36209×(-3)5×(-3)=27159×55×5=452595=3620=2715=4525


(ii) 
6×311×3=-18336×411×4=-2444 611=1833=-2444

Question 19:

Which of the following are pairs of equivalent rational numbers?

(i) -137,39-21
(ii) 3-8,-616
(iii) 94,-36-16
(iv) 715,-2860
(v) 312,-14
(vi) 23,32

Answer 19:

(i) 137,3921
We have:
(−13)×(−21) = 273

And 7×39=273

(13)×(21) =7×39or 137=3921Hence, 137 and 3921 are equivalent rational numbers.                 

(ii) 3-8, -616
We have:

3×16=48

And (−8) ×(−6) =48

∴ 3×16 =(−8)×(−6)

3-8 =-616

(iii)94, -36-16
 
We have:

9×(−16)= −144

And 4×(-36)= −144


 9×(−16) = 4×(−36)

94=-36-16
Therefore, they are equivalent rational numbers.

(iv)715, -2860 

We have:

7×60 =420
And 15×(-28)= −420


∴ 7×60 ≠15×(−28)
Therefore, the rational numbers are not equivalent.

(v) 
312, -14

We have:
3 ×4=12
And 12×(−1)= −12

12 ≠ −12
Therefore, the rational numbers are not equivalent.

(vi) 23,32

We have:

2×2=4

And 3×3=9


2×2≠3×3

Therefore, the rational numbers are not equivalent.           

Question 20:

Find x such that:

(i) -15=8x
(ii) 7-3=x6
(iii) 35=x-25
(iv) 136=-65x
(v) 16x=-4
(vi) -48x=2

Answer 20:

(i)−15=8x

=> −x =5×8
=> x= −40
 
(ii)7-3=x6
=> (
−3)x=7×6

=> 
x=(7×6)(-3)
=>  x=−14
 
 
(iii) 35=x−25
=>    5x=3×(−25)

=>   x=3×(−25)5
=>x  = (−15)

(iv)136=−65x

=> 13x=6×(−65)

=>  x=(−65)13

=>  x= 6×(−​5)

=>  x = −​30

(v)16x=-4
    => x =16(−4)
     =>  x= (−4)

vi)−48x=2
=> 
−482=x1
=>2x=(-48)×1
=>x=-482
x= (−24)

Question 21:

Which of the following rational numbers are equal?

(i) 8-12and-1015
(ii) -39and7-21
(iii) -8-14and1521

Answer 21:

(i)8-12 and−1015


8×15 =120
And ( −10)×(−12)=120

8×15 =(−10) ×(−12)

 8-12 =−1015

Therefore, the rational numbers are equal.

ii)−39, 7-21

(−3)×(−21) =63
And 7× 9=63


∴ (−3)×(−21) =7×9

−39= 7-21

Therefore, the rational numbers are equal.

(iii) −8-14,1521 


(−8) × 21 = −168
And 15 ×(
−​14) = − ​210


(−8) × 21 ≠ 15 × 14

Therefore, the rational numbers are not equal.

Question 22:

State whether the given statement is true of false:

(i) Zero is the smallest rational number.
(ii) Every integer is a rational number.
(iii) The quotient of two integers is always a rational number.
(iv) Every fraction is a rational number.
(v) Every rational number is a fraction.

Answer 22:

(i) False
For example,
1 is smaller than zero and is a rational number.
(ii)True
All integers can be written with the denominator 1.  

(iii) False
Though 0 is an integer, when the denominator is 0, it is not a rational number.
For example, 10 is not a rational number. 

(iv)True
(v) False
−1 is a rational number but not a fraction.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *