RS Aggarwal 2019,2020 solution class 7 chapter 17 Construction Exercise 17C

Exercise 17C

Page-208

Question 1:

Mark (✓) against the correct answer
The supplement of 45° is

(a) 45°
(b) 75°
(c) 135°
(d) 155°

Answer 1:

(c) 135°       Supplement of 45° =180°45°                                     =135°


Question 2:

Mark (✓) against the correct answer
The complement of 80° is

(a) 100°
(b) 10°
(c) 20°
(d) 280°

Answer 2:

(b) 10°Complement of 80° = 90°80°                                   =10°  


Question 3:

Mark (✓) against the correct answer
An angle is its own complement. The measure of the angle is

(a) 30°
(b) 45°
(c) 90°
(d) 60°

Answer 3:

(b)45°Suppose the angle is x°.Then, the complement is also x°.Complement of x°=90°-x°x°=90°-x°x°+x°=90°2x°=90°x=902x=45


Question 4:

Mark (✓) against the correct answer
An angle is one-fifth of its supplement. The measure of the angle is

(a) 30°
(b) 15°
(c) 75°
(d) 150°

Answer 4:

(a) 30°Suppose the angle is x.x=(180-x)55x=180-x5x+x=180x=1806x=30°


Question 5:

Mark (✓) against the correct answer
An angle is 24° more than its complement. The measure of the angle is

(a) 47°
(b) 57°
(c) 53°
(d) 66°

Answer 5:

(b) 57°Suppose the angle is x.x=90-x+24x+x=1142x=114x=1142x=57°


Question 6:

Mark (✓) against the correct answer
An angle is 32° less than its supplement. The measure of the angle is

(a) 37°
(b) 74°
(c) 148°
(d) none of these

Answer 6:

(b) 74°Suppose the angle is x.x=180-x-32x+x=1482x=148x=1482x=74°


Question 7:

Mark (✓) against the correct answer
Two supplementary angles are in the ratio 3 : 2. The smaller angle measures

(a) 108°
(b) 81°
(c) 72°
(d) none of these

Answer 7:

(c) 72°Supplementary angles:      3x+2x=180     =>x=1805x=36° Smaller angle = (2×36°)                           =72°


Question 8:

Mark (✓) against the correct answer
In the given figure, AOB is a straight line and the ray OC stands on it.
If ∠BOC = 132°, then ∠AOC = ?



(a) 68°
(b) 48°
(c) 42°
(d) none of these

Answer 8:

(b) 48°AOC+BOC=180°  (linear pair)AOC=180°-BOC=180°-132°=48°


Question 9:

Mark (✓) against the correct answer
In the given figure, AOB is a straight line, ∠AOC = 68° and ∠BOC = x°.
The value of x is



(a) 32
(b) 22
(c) 112
(d) 132

Answer 9:

(x) 112AOC+AOB =180°     (linear pair)68°+x°=180°x°=180°-68°x°=112°


Question 10:

Mark (✓) against the correct answer
In the adjoining figure, what value of x will make AOB a straight line?



(a) x = 30
(b) x = 35
(c) x = 25
(d) x = 40

Answer 10:

(c)x=35(2x10)+(3x+15)=180=>2x10+3x+15=180=>5x+5=180=>5x=1805=>5x=175=>x=1753551=>x=35
Page-209

Question 11:

Mark (✓) against the correct answer
In the given figure, what value of x will make AOB a straight line?



(a) x = 50
(b) x = 100
(c) x = 60
(d) x = 80

Answer 11:

(d) x=80x+55+45=180 (linear pair)x=180-55-45x=180-100x=80

Question 12:

Mark (✓) against the correct answer
In the given figure, it is given that AOB is a straight line and 4x = 5y.
What is the value of x?



(a) 100
(b) 105
(c) 110
(d) 115

Answer 12:

(a) 100  x+y=180  (linear pair)     =>x+45x=180°     =>9x=5×180     =>x=100

Question 13:

Mark (✓) against the correct answer
In the given figure, two straight lines AB and CD intersect at a point O and ∠AOC = 50°. Then, ∠BOD = ?



(a) 40°
(b) 50°
(c) 130°
(d) 60°

Answer 13:

(b) 50° Here, AOC and BOD are vertically opposite angles.     AOC=BOD      Given, AOC=500       BOD=500

Question 14:

Mark (✓) against the correct answer
In the given figure, AOB is a straignt line, ∠AOC = (13x − 8)°, ∠COD = 50° and ∠BOD = (x + 10)°. The value of x is



(a) 32
(b) 42
(c) 36
(d) 52

Answer 14:

(a) 32  (3x8)°+(x+10)°+50°=180°  (linear pair)           =>4x°+52°=180°           =>4x°=128°          =>x°=32° x=32

Question 15:

Mark (✓) against the correct answer
In ∆ABC, side BC has been produced to D. If ∠ACD = 132° and ∠A = 54°, then ∠B = ?



(a) 48°
(b) 78°
(c) 68°
(d) 58°

Answer 15:

(b) 78° ACD=ABC+BAC  (exterior angle property) =>ABC=132°54°=78°

Question 16:

Mark (✓) against the correct answer
In ∆ABC, side BC has been produced to D. If ∠BAC = 45° and ∠ABC = 55°, then ∠ACD = ?



(a) 80°
(b) 90°
(c) 100°
(d) 110°

Answer 16:

(c) 100°ACB=ABC+BAC  (exterior angle property)                        =(45°+55°)                        =100°                      

Question 17:

Mark (✓) against the correct answer
In the given figure, side BC of ∆ABC is  produced to D such that ∠ABC = 70° and ∠ACD = 120°. Then, ∠BAC = ?



(a) 60°
(b) 50°
(c) 70°
(d) 35°

Answer 17:

(b) 50°BCA=18001200 (linear pair)                       =600          BAC=1800(600+700)   (angle sum property of triangles)                      =500

Question 18:

Mark (✓) against the correct answer
In the given figure, rays OA, OB, OC and OD are such that ∠AOB = 50°, ∠BOC = 90°, ∠COD = 70° and ∠AOD = x°.
Then, the value of x is



(a) 50°
(b) 70°
(c) 150°
(d) 90°

Answer 18:

(c) 150° x0+700+500+900=3600  (complete angle)         =>x0=36002100                   = 1500

Question 19:

Mark (✓) against the correct answer
In the given figure, ∠A = 50°, CE || BA and ∠ECD = 60°
Then, ∠ACB = ?



(a) 50°
(b) 60°
(c) 70°
(d) 80°

Answer 19:

(c)70° Here, ACE=BAC=500  [ alternate angles]                   ∠ACB+∠ACE+∠DCE=180°  (linear pair)                       ACB=1800(50°+60°)                                   =180°-110°                                    =70°

Question 20:

Mark (✓) against the correct answer
In ∆ABC, if ∠A = 65° and C = 85°, then B = ?

(a) 25°
(b) 30°
(c) 35°
(d) 40°

Answer 20:

(b) 30°A+B+C=1800=>B=1800(650+850)=>B=18001500=>B=300    

Question 21:

Mark (✓) against the correct answer
The sum of all angles of a triangle is

(a) 90°
(b) 100°
(c) 150°
(d) 180°

Answer 21:

(d) 1800

Page-210

Question 22:

Mark (✓) against the correct answer
The sum of all angles of a quadrilateral is

(a) 180°
(b) 270°
(c) 360°
(d) 480°

Answer 22:

(c) 3600

Question 23:

Mark (✓) against the correct answer
In the given figure, AB || CD. ∠OAB = 150° and ∠OCD = 120°.
Then ∠AOC = ?



(a) 80°
(b) 90°
(c) 70°
(d) 100°

Answer 23:

(b) 90°  Draw a parallel line through O and produce AB and CD on R and P, respectively.OCD=COQ=1200  (alternate angles)  COS=18001200 (linear pair)                    =600Similarly, AOQ=BAO=1500     (alternate angles) AOS=180o1500   (linear pair)                =300AOC=AOS+COSAOC=600+300=900


Question 24:

Mark (✓) against the correct answer
In the given figure, PQ || RS. ∠PAB = 60° and ∠ACS = 100°.
Then ∠BAC = ?



(a) 40°
(b) 60°
(c) 80°
(d) 50°

Answer 24:

(a) 40° PAC=ACS=1000  [alternate angles]          PAB+BAC=1000          =>BAC=100°-60°=40°

Question 25:

Mark (✓) against the correct answer
In the given figure, AB || CD || EF,ABG = 110°, ∠GCD = 100° and ∠BGC = x°.
Then x = ?



(a) 35
(b) 50
(c) 30
(d) 40

Answer 25:

(c) 30 Here, DCG+CGF=1800  (angles on the same side of a transversal line are supplementary)           =>CGF=1800-100°=80°             ABG=BGF=1100       [alternate angles]            x0+CGF=1100            =>x0=1100800           =>x0=300 x=30

Question 26:

The sum of any two sides of a triangle is always

(a) equal to the third side
(b) less than the third side
(c) greater than or equal to the 3rd side
(d) greater than the 3rd side

Answer 26:

(d) greater than the 3rd side

Question 27:

The diagonals of a rhombus

(a) are always equal
(b) never bisect each other
(c) always bisect each other at an acute angle
(d) always bisect each other at right angles

Answer 27:

(d) The diagonals of a rhombus always bisect each other at right angles.

Question 28:

Mark (✓) against the correct answer
In ∆ABC, B = 90°, AB = 5 cm and AC = 13 cm. Then, BC = ?



(a) 8 cm
(b) 18 cm
(c) 12 cm
(d) none of these

Answer 28:

(c) 12 cm In a right angle triangle:            AC2=AB2+BC2                           (Pythagoras theorem)           =>BC2=13252             => BC2  =16925            =>BC2=144            =>BC   =±12 The length cannot be negative. ∴ BC= 12 cm

Question 29:

Mark (✓) against the correct answer
In a ∆ABC, it is given that ∠B = 37°, and ∠C = 29°. Then, ∠A = ?

(a) 86°
(b) 66°
(c) 114°
(d) 57°

Answer 29:

(c) 114° In triangle ABC:          A+B+C=1800          =>A=1800(370+290)          =>A=1800(660)                       =1140

Question 30:

Mark (✓) against the correct answer
The angles of a triangle are in the ratio 2 : 3 : 7. The measure of the largest angle is

(a) 84°
(b) 98°
(c) 105°
(d) 91°

Answer 30:

(c) 105°Suppose the angles of a triangle are 2x, 3x and 7x. Sum of the angles of a triangle is 180°.           2x+3x+7x=180           =>12x=180             =>x=150     Measure of the largest angle = 150×7=1050

Question 31:

Mark (✓) against the correct answer
In a ∆ABC, if 2∠A = 3∠B = 6∠C, then ∠B = ?

(a) 30°
(b) 90°
(c) 60°
(d) 45°

Answer 31:

(c) 60°Given:2A=3B or A=32B3B=6C, or ∠C=12∠B In a ABC:         A+B+C=1800        =>32B+B +12B=1800        =>3B+2B+B2=1800        =>6B2=1800        =>B=36006        =>B=600

Question 32:

Mark (✓) against the correct answer
In a ∆ABC, if ∠A + ∠B = 65° and ∠B +C = 140°. Then, = ∠B?

(a) 25°
(b) 35°
(c) 40°
(d) 45°

Answer 32:

(a) 25°Given:A+B=65°A=65°-B                        ...(i)B+C=140°C=140°-B                     ...(ii)In ABC:A+B+C=180°Putting the value of B and C:65°-B+B+140°-B=180°-B=180°-205°B=25°

Question 33:

Mark (✓) against the correct answer
In a ∆ABC, ∠A − ∠B = 33° and ∠B −∠C = 18°. Then, = ∠B?

(a) 35°
(b) 55°
(c) 45°
(d) 57°

Answer 33:

(b) 55° In ABC:      A+B+C=1800       ...(i)      Given:      AB=330=>A=B+330         ...(ii)      BC=180=>C=B180     ...(iii)Using (ii) and (iii) in equation (i):=>B + 330+B + B180=1800     => 3B + 150=1800     => 3B = 1650     => B = 16503=550                   

Page-211

Question 34:

Mark (✓) against the correct answer
The angles of a triangle are (3x)° ,(2x − 7)° and (4x − 11)°. Then, x = ?

(a) 18
(b) 20
(c) 22
(d) 30

Answer 34:

(c) 22 Sum of the angles of a triangle is 180°.           (3x)°+(2x7)°+(4x11)°=180°            =>9x°18°=180°             =>9x°=198°             =>x°=22°               x=22

Question 35:

Mark (✓) against the correct answer
ABC is right-angled at A. If AB = 24 cm and AC = 7 cm then BC = ?

(a) 31 cm
(b) 17 cm
(c) 25 cm
(d) 28 cm

Answer 35:

(c) 25 cm In a right angle triangle ABC:           AC2=BC2+AB2            =>BC2=242+72              =>BC2576+49               =>BC2=625               =>BC=±25 cmSince the length cannot be negative, we will negelect -25. BC=25 cm

Question 36:

Mark (✓) against the correct answer
A ladder is placed in such a way that its foot is 15 m away from the wall and its top reaches a window 20 m above the ground. The length of the ladder is

(a) 35 m
(b) 25 m
(c) 18 m
(d) 17.5 m

Answer 36:

(b) 25 mIn right triangle ABC:      AC2=AB2+BC2              =152+202                 => AC2=625      =>AC=±25Since the length cannot be negative, we will negelect -25. Length of the ladder = 25 m

Question 37:

Mark (✓) against the correct answer
Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?

(a) 13 m
(b) 14 m
(c) 15 m
(d) 12.8 m

Answer 37:

(a) 13 mSuppose there are two poles AE and BD.EC=AB=12 m      (ABCE is a rectangle)AE= BC= 6 m      (ABCE is a rectangle)DC= BD-AE      = 11-6   =5 mIn the right angled triangle ECD:ED2=EC2+DC2  (Pythagoras theorem)ED2=52+122ED2=25+144ED2=169ED=±13The length cannot be negative.ED=13 m

 

Question 38:

Mark (✓) against the correct answer
ABC is an isosceles triangle with ∠C = 90° and AC = 5 cm. Then, AB = ?

(a) 2.5 cm
(b) 5 cm
(c) 10 cm
(d) 52 cm

Answer 38:

(d) 52 cm In right angled isoceles triangle, right angled at C, AC is equal to BC and AB is the hypotenuse.           AB2=AC2+BC2                    =52+52                    =50           AB=2×25=52 cm

No comments:

Post a Comment

Home

Contact Form

Name

Email *

Message *