RS Aggarwal 2019,2020 solution class 7 chapter 16 Congruence Exercise 16

Exercise 16

Page-199



Question 1:

State the correspondence between the vertices, sides and angles of the following pairs of congruent triangles.

(i) ∆ABC ≅ ∆EFD
(ii) ∆CAB ≅ ∆QRP
(iii) ∆XZY ≅ ∆QPR
(iv) ∆MPN ≅ ∆SQR

Answer 1:

We have to state the correspondence between the vertices, sides and angles of the following pairs of congruent triangles.(i) ABCEFDCorrespondence between vertices:   AE, BF, CDCorrespondence between sides:  AB=EF, BC=FD,CA=DECorrespondence between angles:  A=E,B=F,C=D(ii)CABQRPCorrespondence between vertices:CQ, AR, BPCorrespondence between sides:CA=QR, AB=RP, BC=PQCorrespondence between angles:C=Q, A=R, B=P(iii) XZY QPRCorrespondence between vertices:XQ, ZP, YRCorrespondence between sides:XZ=QP, ZY=PR, YX=RQCorrespondence between angles:X=Q, Z=P, Y=R(iv) MPNSQRCorrespondence between vertices:MS, PQ, NRCorrespondence between sides:MP=SQ, PN=QR, NM=RSCorrespondence between angles:M=S, P=Q, N=R
Page-200


Question 2:

Given below are pairs of congruent triangles. State the property of congruence and name the congruent triangles in each case.


Answer 2:

(i) ACB DEF(SAS congruence property)(ii) RPQ LNM(RHS congruence property)(iii) YXZ TRS(SSS congruence property)(iv)DEF PNM(ASA congruence property)(v) ACB ACD(ASA congruence property)


Question 3:

In Fig. PL ⊥ OA and PM ⊥ OB such that PL = PM. Is ∆PLO ≅ ∆PMO?
Give reasons in support of your answer.


Answer 3:

Given:      PLOA      PM OB       PL=PMTo prove:PLOPMOProof:In PLO andPMO:PLO=PMO    (90°each)PO=PO                   (common)PL=PM                    (given)By RHS congruence property:PLO PMO


Question 4:

In Fig. AD = BC and AD || BC. Is AB = DC? Give reasons in support of your answer.

Figure

Answer 4:

Given:            AD=BC          ADBCWe have to show that AB=DC.Proof:ADBCBCA= DAC   (alternate angles) In ABC andCDA: BC =DA                     (given )BCA= DAC       (proved above) AC= AC                     (common)By SAS congruence property:  ABCCDA=> AB=CD                            (corresponding parts of the congruent triangles)


Question 5:

In the adjoining figure, AB = AC and BD = DC. Prove that ∆ADB ≅ ∆ADC and hence show that
(i) ∠ADB = ∠ADC = 90°
(ii) ∠BAD = ∠CAD.


Answer 5:

Given:AB=AC, BD =DCTo prove: ADBADCProof:(i) In ADB andADC:AB=AC          (given)BD=DC          (given)DA=DA      (common)By SSS congruence property:ADB ADCADB=ADC     (corresponding parts of the congruent triangles)       ...(1)ADB and ADC are on the straight line.  ADB+ADC=180°ADB+ADB=180°=>2ADB=180°=>ADB=90°From (1): ADB=ADC  =90°(ii)BAD=CAD     (corresponding parts of the congruent triangles)


Question 6:

In the adjoining figure, ABC is a triangle in which AD is the bisector of ∠A. If AD ⊥ BC, show that ∆ABC is isosceles.


Answer 6:

Given:AD is a bisector of A.=>DAB=DAC          ...(1)ADBC=>BDA=CDA         (90° each)To prove:ABC is isosceles.Proof:InDAB and DAC:BDA=CDA         (90° each)DA=DA                      (common)DAB=DAC           (from 1)  By ASA congruence property:    DAB  DAC=>AB=AC     (corresponding parts of the congruent triangles)Therefore, ABC is isosceles.
Page-201

Question 7:

In the adjoining figure, AB = AD and CB = CD.
Prove that ∆ABC ≅ ∆ADC.

Figure

Answer 7:

Given:          AB=AD          CB=CDTo prove:ABC ADCProof:In ABC and ADC:AB=AD         (given)BC=DC         (given)AC=AC         (common)ABC ADC                                  (by SSS congruence property)

Question 8:

In the given figure, PA ⊥ AB, QB ⊥ AB and PA = QB.
Prove that ∆OAP ≅ ∆OBQ.
Is OA = OB?

Figure

Answer 8:

Given:             PAAB             QBAB             PA = QBTo prove: OAPOBQFind whether OA=OB.Proof: InOAP andOBQ:POA=QOB           (vertically opposite angles)OAP =OBQ            (90° each)PA=QB                          (given)By AAS congruence property: OAPOBQ=>OA=OB   (corresponding parts of the congruent triangles)

Question 9:

In the given figure, triangles ABC and DCB are right-angled at A and D respectively and AC = DB. Prove that ∆ABC ≅ ∆DCB.

Figure

Answer 9:

Given:Triangles ABC and DCB are right angled at A and D, respectively.AC=DBTo prove: ABC DCBIn ABC and DCB:CAB=BDC         (90° each)  BC=BC                      (common)AC= DB                         (given)By R.H.S. congruence property:    ABC DCB                                          

Question 10:

In the adjoining figure, ∆ABC is an isosceles triangle in which AB = AC. If E and F be the midpoints of AC and AB respectively, prove that BE = CF.

Figure

Answer 10:

Given:ABC is an isosceles triangle in which AB=AC.E and F are midpoints of AC and AB, respectively.To prove:BE=CFProof:E and F are midpoints of AC and AB, respectively.=>AF=FB, AE=ECAB=AC=>12AB=12AC=>FB=ECABC=ACB       (angle opposite to equal sides are equal )=>FBC=ECBConsider BCF and CBE:BC=BC                  (common)FBC=ECB      (proved above)FB=EC                   (proved above)By SAS congruence property:BCF  CBEBE =CF        (corresponding parts of the congruent triangles)

Question 11:

In the adjoining figure, P and Q are two points on equal sides AB and AC of an isosceles triangle ABC such that AP = AQ.
Prove that BQ = CP.

Figure

Answer 11:

Given: AB=AC ABC is an isosceles triangle.AP= AQTo prove:BQ=CPProof:AB=AC   (given)AP=AQ   (given)AB-AP=AC-AQ =>BP=CQABC=ACB     (angle opposite to the equal sides are equal)=>PBC=QCBIn PBC andQCB:PB=QC       (proved above)PBC=QCB    (proved above)BC=BC        (common)By SAS congruence property:PBC QCBBQ=CP         (corresponding parts of the congruent triangles)

Question 12:

In the given figure, ∆ABC is an isosceles triangle in which AB = AC. If AB and AC are produced to D and E respectively such that BD = CE.
Prove that BE = CD.

Figure

Answer 12:

Given:ABC is an isosceles triangle. AB=ACBD=CETo prove:BE=CD Proof:AB+BD=AC+CE         (As, AB=AC, BD=CE)=>AD=AEConsider ACD and ABE: AC=AB       (given)CAD=BAE     (common)AD=AE           (proved above)By SAS congruence property: ACD ABE =>CD =BE      (corresponding parts of the congruent triangles)

Page-202

Question 13:

In the adjoining  figure, ∆ABC is an isosceles triangle in which AB = AC. Also, D is a point such that BD = CD.
Prove that AD bisects ∠A and ∠D

Figure

Answer 13:

.Given:ABC is an isosceles triangle.AB=ACBD =CD To prove:AD bisects A and D.Proof:Consider ABD and ACD:AB=AC    (given)BD=CD    (given)AD=AD     (common) By SSS congruence property:ABD ACD =>BAD=CAD     (by cpct)=>BDA=CDA      (by cpct)

Question 14:

If two triangles have their corresponding angles equal, are they always congruent? If not, draw two triangles which are not congruent but which have their corresponding angles equal.

Answer 14:

No, its not necessary. If the corresponding angles of two triangles are equal, then they may or may not be congruent.
They may have proportional sides as shown in the following figure:

Question 15:

Are two triangles congruent if two sides and an angle of one triangle are respectively equal to two sides and an angle of the other? If not then under what conditions will they be congruent?

Answer 15:

No, two triangles are not congruent if their two corresponding sides and one angle are equal. They will be congruent only if the said angle is the included angle between the sides.

Question 16:

Draw ∆ABC and ∆PQR such that they are equal in area but not congruent.

Answer 16:


Both triangles have equal area due to the the same product of height and base. But they are not congruent.

Question 17:

Fill in the blanks:

(i) Two lines segments are congruent if they have ...... .
(ii) Two angles are congruent if they have ...... .
(iii) Two squares are congruent if they have ...... .
(iv) Two circles are congruent if they have ...... .
(v) Two rectangles are congruent if they have ...... .
(vi) Two triangles are congruent if they have ...... .

Answer 17:

(i) the same length

(ii) the same measure

(iii)the same side length

(iv) the same radius

(v) the same length and the same breadth

(vi) equal parts

Question 18:

Which of the following statements are true and which of them are false?

(i) All squares are congruent.
(ii) If two squares have equal areas, they are congruent.
(iii) If two figures have equal areas, they are congruent.
(iv) If two triangles are equal in area, they are congruent.
(v) If two sides and one angle of a triangle are equal to the corresponding two sides and angle of another triangle, the triangle are congruent.
(vi) If two angles and any side of a triangle are equal to the corresponding angles and the side of another triangle then the triangles are congruent.
(vii) If three angles of a triangle are equal to the corresponding angles of another triangle then the triangles are congruent.
(viii) If the hypotenuse and an acute angle of a right triangle are equal to the hypotenuse and the corresponding acute angle of another right triangle then the triangle are congruent.
(ix) If the hypotenuse of a right triangle is equal to the hypotenuse of another right triangle then the triangles are congruent.
(x) If two triangles are congruent then their corresponding sides and their corresponding angles are congruent.

Answer 18:

(i) False
This is because they can be equal only if they have equal sides.

(ii) True
This is because if squares have equal areas, then their sides must be of equal length.

(iii) False
For example, if a triangle and a square have equal area, they cannot be congruent.

(iv) False
For example, an isosceles triangle and an equilateral triangle having equal area cannot be congruent.

(v) False
They can be congruent if two sides and the included angle of a triangle are equal to the corresponding two sides and the included corresponding angle of another triangle.

(vi) True
This is because of the AAS criterion of congruency.

(vii) False
Their sides are not necessarily equal.


(viii)  True
This is because of the AAS criterion of congruency.

(ix) False
This is because two right triangles are congruent if the hypotenuse and one side of the first triangle are respectively equal to the hypotenuse and the corresponding side of the second triangle.

(x) True

No comments:

Post a Comment

Contact Form

Name

Email *

Message *