RD Sharma solution class 8 chapter 8 Division of Algebraic Expression Exercise 8.5

Exercise 8.5

Page-8.15

Question 1:

Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
(i) 3x2 + 4x + 5, x − 2
(ii) 10x2 − 7x + 8, 5x − 3
(iii) 5y3 − 6y2 + 6y − 1, 5y − 1
(iv) x4x3 + 5x, x − 1
(v) y4 + y2, y2 − 2

Answer 1:

(i) 3x2+4x+5x-2=3x(x-2)+10(x-2)+25(x-2)=(x-2)(3x+10)+25(x-2)=(3x+10)+25(x-2)Therefore, quotient=3x+10 and remainder=25.(ii) 10x2-7x+85x-3=2x(5x-3)-15(5x-3)+475(5x-3)=(5x-3)(2x-15)+475(5x-3)=(2x-15)+4755x-3Therefore, quotient=2x-15 and remainder=475.(iii) 5y3-6y2+6y-15y-1=y2(5y-1)-y(5y-1)+1(5y-1)(5y-1)=(5y-1)(y2-y+1)(5y-1)=(y2-y+1)Therefore, Quotient = y2-y+1 and remainder = 0

(iv) x4-x3+5xx-1=x3(x-1)+5(x-1)+5x-1=(x-1)(x3+5)+5x-1=(x3+5)+5x-1Therefore, quotient = x3+5 and remainder = 5.
(v) y4+y2y2-2=y2(y2-2)+3(y2-2)+6y2-2=(y2-2)(y2+3)+6y2-2=(y2+3)+6y2-2Therefore, quotient = y2+3 and remainder = 6.

Question 2:

Find whether the first polynomial is a factor of the second.
(i) x + 1, 2x2 + 5x + 4
(ii) y − 2, 3y3 + 5y2 + 5y + 2
(iii) 4x2 − 5, 4x4 + 7x2 + 15
(iv) 4 − z, 3z2 − 13z + 4
(v) 2a − 3, 10a2 − 9a − 5
(vi) 4y + 1, 8y2 − 2y + 1

Answer 2:

(i) 2x2+5x+4x+1=2x(x+1)+3(x+1)+1x+1=(x+1)(2x+3)+1(x+1)=(2x+3)+1x+1 Remainder=1Therefore, (x+1) is not a  factor of 2x2+5x+4

(ii) 3y3+5y2+5y+2y-2=3y2(y-2)+11y(y-2)+27(y-2)+56y-2=(y-2)(3y2+11y+27)+56y-2=(3y2+11y+27)+56y-2 Remainder = 56 (y-2) is not a factor of 3y3+5y2+5y+2.


(iii)  4x4+2+154x2-5= x2(4x2-5)+3(4x2-5)+304x2-5= (4x2-5)(x2+3)+304x2-5=(x2+3)+304x2-5 Remainder = 30Therefore, (4x2-5) is not a factor of 4x4+7x2+15

(iv) 3z2-13z+44-z=3z2-12z-z+44-z=3z(z-4)-1(z-4)4-z=(z-4)(3z-1)4-z=(4-z)(1-3z)4-z=1-3z Remainder = 0 (4-z) is a factor of 3z2-13z+4.

(V) 10a2-9a-52a-3=5a(2a-3)+3(2a-3)+42a-3=(2a-3)(5a+3)+42a-3=(5a+3)+42a-3 Remainder = 4 ( 2a-3) is not a factor of 10a2-9a-5.

(vi) 8y2-2y+14y+1=2y(4y+1)-1(4y+1)+24y+1=(4y+1)(2y-1)+24y+1=(2y-1)+24y+1 Remainder = 2 (4y+1) is not a factor of 8y2-2y+1.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *