Loading [MathJax]/jax/output/HTML-CSS/jax.js

RD Sharma solution class 8 chapter 7 Factorization Exercise 7.9

Exercise 7.9

Page-7.32

Question 1:

Factorize each of the following quadratic polynomials by using the method of  completing the square:
p2 + 6p + 8

Answer 1:

p2+6p+8=p2+6p+(62)2-(62)2+8    [Adding and subtracting (62)2, that is, 32]=p2+6p+32-32+8=p2+2×p×3+32-9+8=p2+2×p×3+32-1=(p+3)2-12                              [Completing the square]=[(p+3)-1][(p+3)+1]=(p+3-1)(p+3+1)=(p+2)(p+4)

Question 2:

Factorize each of the following quadratic polynomials by using the method of completing the square:
q2 − 10q + 21

Answer 2:

q2-10q+21=q2-10q+(102)2-(102)2+21   [Adding and subtracting (102)2, that is, 52]=q2-2×q×5+52-52+21=(q-5)2-4                                        [Completing the square]=(q-5)2-22 =[(q-5)-2][(q-5)+2]=(q-5-2)(q-5+2)=(q-7)(q-3)

Question 3:

Factorize each of the following quadratic polynomials by using the method of completing the square:
4y2 + 12y + 5

Answer 3:

4y2+12y+5=4(y2+3y+54)                                    [Making the coefficient of y2=1]=4[y2+3y+(32)2-(32)2+54]        [Adding and subtracting (32)2]=4[(y+32)2-94+54]=4[(y+32)2-12]                                  [Completing the square]=4[(y+32)-1][(y+32)+1]=4(y+32-1)(y+32+1)=4(y+12)(y+52)=(2y+1)(2y+5)

Question 4:

Factorize each of the following quadratic polynomials by using the method of completing the square:
p2 + 6p − 16

Answer 4:

p2+6p-16=p2+6p+(62)2-(62)2-16    [Adding and subtracting (62)2, that is, 32]=p2+6p+32-9-16=(p+3)2-25                                [Completing the square]=(p+3)2-52=[(p+3)-5][(p+3)+5]=(p+3-5)(p+3+5)=(p-2)(p+8)

Question 5:

Factorize each of the following quadratic polynomials by using the method of completing the square:
x2 + 12x + 20

Answer 5:

x2+12x+20=x2+12x+(122)2-(122)2+20       [Adding and subtracting (122)2, that is, 62]=x2+12x+62-62+20=(x+6)2-16                                          [Completing the square]=(x+6)2-42=[(x+6)-4][(x+6)+4]=(x+6-4)(x+6+4)=(x+2)(x+10)

Question 6:

Factorize each of the following quadratic polynomials by using the method of completing the square:
a2 − 14a − 51

Answer 6:

a2-14a-51=a2-14a+(142)2-(142)2-51   [Adding and subtracting (142)2, that is, 72]=a2-14a+72-72-51=(a-7)2-100                                    [Completing the square]=(a-7)2-102 =[(a-7)-10][(a-7)+10]=(a-7-10)(a-7+10)=(a-17)(a+3)

Page-7.33

Question 7:

Factorize each of the following quadratic polynomials by using the method of completing the square:
a2 + 2a − 3

Answer 7:

a2+2a-3=a2+2a+(22)2-(22)2-3   [Adding and subtracting (22)2, that is, 12]=a2+2a+12-12-3=(a+1)2-4                                    [Completing the square]=(a+1)2-22=[(a+1)-2][(a+1)+2]=(a+1-2)(a+1+2)=(a-1)(a+3)

Question 8:

Factorize each of the following quadratic polynomials by using the method of completing the square:
4x2 − 12x + 5

Answer 8:

4x2-12x+5=4(x2-3x+54)                                     [Making the coefficient of x2=1]=4[x2-3x+(32)2-(32)2+54]      [Adding and subtracting (32)2]=4[(x-32)2-94+54]                                 [Completing the square]=4[(x-32)2-12]    =4[(x-32)-1][(x-32)+1]=4(x-32-1)(x-32+1)=4(x-52)(x-12)=(2x-5)(2x-1)

Question 9:

Factorize each of the following quadratic polynomials by using the method of completing the square:
y2 − 7y + 12

Answer 9:

 y2-7y+12=y2-7y+(72)2-(72)2+12      [Adding and subtracting (72)2]=(y-72)2-494+484                   [Completing the square]=(y-72)2-14 =(y-72)2-(12)2 =[(y-72)-12][(y-72)+12]=(y-72-12)(y-72+12)=(y-4)(y-3)

Question 10:

Factorize each of the following quadratic polynomials by using the method of completing the square:
z2 − 4z − 12

Answer 10:

z2-4z-12=z2-4z+(42)2-(42)2-12       [Adding and subtracting (42)2, that is, 22]=z2-4z+22-22-12=(z-2)2-16                                [Completing the square]=(z-2)2-42=[(z-2)-4][(z-2)+4]=(z-6)(z+2)

No comments:

Post a Comment

Contact Form

Name

Email *

Message *