RD Sharma solution class 8 chapter 7 Factorization Exercise 7.7

Exercise 7.7

Page-7.27

Question 1:

Factorize each of the following algebraic expression:
x2 + 12x − 45

Answer 1:

To factorise x2+12x-45, we will find two numbers p and q such that p+q=12 and pq=-45.Now, 15+(-3)=12 and 15×(-3)=-45Splitting the middle term 12x in the given quadratic as -3x+15x, we get: x2+12x-45=x2-3x+15x-45                       =(x2-3x)+(15x-45)                       =x(x-3)+15(x-3)                       =(x+15)(x-3)

Question 2:

Factorize each of the following algebraic expression:
40 + 3xx2

Answer 2:

We have:40+3x-x2-(x2-3x-40) To factorise (x2-3x-40), we will find two numbers p and q such that p+q=-3 and pq=-40.Now,  5+(-8)=-3 and 5×(-8)=-40Splitting the middle term -3x in the given quadratic as 5x-8x, we get:40+3x-x2=-(x2-3x-40)                    =-(x2+5x-8x-40)                    =-[(x2+5x)-(8x+40)]                    =-[x(x+5)-8(x+5)]                    =-(x-8)(x+5)                    =(x+5)(-x+8)

Question 3:

Factorize each of the following algebraic expression:
a2 + 3a − 88

Answer 3:

To factorise a2+3a-88, we will find two numbers p and q such that p+q=3 and pq=-88.Now,  11+(-8)=3 and 11×(-8)=-88Splitting the middle term 3a in the given quadratic as 11a-8a, we get:a2+3a-88=a2+11a-8a-88                    =(a2+11a)-(8a+88)                    =a(a+11)-8(a+11)                    =(a-8)(a+11)

Question 4:

Factorize each of the following algebraic expression:
a2 − 14a − 51

Answer 4:

To factorise a2-14a-51, we will find two numbers p and q such that p+q=-14 and pq=-51.Now, 3+(-17)=-14 and 3×(-17)=-51Splitting the middle term -14a in the given quadratic as 3a-17a, we get:a2-14a-51=a2+3a-17a-51                       =(a2+3a)-(17a+51)                       =a(a+3)-17(a+3)                       =(a-17)(a+3)

Question 5:

Factorize each of the following algebraic expression:
x2 + 14x + 45

Answer 5:

To factorise x2+14x+45, we will find two numbers p and q such that p+q=14 and pq=45.Now, 9+5=14 and 9×5=45Splitting the middle term 14x in the given quadratic as 9x+5x, we get:x2+14x+45=x2+9x+5x+45                      =(x2+9x)+(5x+45)                      =x(x+9)+5(x+9)                      =(x+5)(x+9)

Question 6:

Factorize each of the following algebraic expression:
x2 − 22x + 120

Answer 6:

To factorise x2-22x+120, we will find two numbers p and q such that p+q=-22 and pq=120.Now, (-12)+(-10)=-22 and (-12)×(-10)=120Splitting the middle term -22x in the given quadratic as -12x-10x, we get:x2-22x+12=x2-12x-10x+120                      =(x2-12x)+(-10x+120)                      =x(x-12)-10(x-12)                      =(x-10)(x-12)

Question 7:

Factorize each of the following algebraic expression:
x2 − 11x − 42

Answer 7:

To factorise x2-11x-42, we will find two numbers p and q such that p+q=-11 and pq=-42.Now,3+(-14)=-22 and 3×(-14)=42Splitting the middle term -11x in the given quadratic as-14x+3x, we get: x2-11x-42=x2-14x+3x-42                       =(x2-14x)+(3x-42)                       =x(x-14)+3(x-14)                       =(x+3)(x-14)

Question 8:

Factorize each of the following algebraic expression:
a2 + 2a − 3

Answer 8:

To factorise a2+2a-3, we will find two numbers p and q such that p+q=2 and pq=-3.Now, 3+(-1)=2 and  3×(-1)=-3Splitting the middle term 2a in the given quadratic as-a+3a, we get:a2+2a-3=a2-a+3a-3                  =(a2-a)+(3a-3)                  =a(a-1)+3(a-1)                  =(a+3)(a-1)

Question 9:

Factorize each of the following algebraic expression:
a2 + 14a + 48

Answer 9:

To factorise a2+14a+48, we will find two numbers p and q such that p+q=14 and pq=48.Now, 8+6=14 and 8×6=48Splitting the middle term 14a in the given quadratic as 8a+6a, we get:a2+14a+48=a2+8a+6a+48                       =(a2+8a)+(6a+48)                       =a(a+8)+6(a+8)                       =(a+6)(a+8)

Question 10:

Factorize each of the following algebraic expression:
x2 − 4x − 21

Answer 10:

To factorise x2-4x-21, we will find two numbers p and q such that p+q=-4 and pq=-21.Now,3+(-7)=-4 and 3×(-7)=-21Splitting the middle term -4x in the given quadratic as -7x+3x, we get:x2-4x-21=x2-7x+3x-21                    =(x2-7x)+(3x-21)                    =x(x-7)+3(x-7)                    =(x+3)(x-7)

Question 11:

Factorize each of the following algebraic expression:
y2 + 5y − 36

Answer 11:

To factorise y2+5y-36, we will find two numbers p and q such that p+q=5 and pq=-36.Now, 9+(-4)=5 and 9×(-4)=-36Splitting the middle term 5y in the given quadratic as -4y+9y, we get: y2+5y-36=y2-4y+9y-36                     =(y2-4y)+(9y-36)                     =y(y-4)+9(y-4)                     =(y+9)(y-4)

Question 12:

Factorize each of the following algebraic expression:
(a2 − 5a)2 − 36

Answer 12:

(a2-5a)2-36=(a2-5a)2-62=[(a2-5a)-6][(a2-5a)+6]=(a2-5a-6)(a2-5a+6)In order to factorise a2-5a-6, we will find two numbers p and q such that p+q=-5 and pq=-6Now, (-6)+1=-5 and (-6)×1=-6Splitting the middle term -5 in the given quadratic as -6a+a, we get:a2-5a-6=a2-6a+a-6                   =(a2-6a)+(a-6)                   =a(a-6)+(a-6)                   =(a+1)(a-6)Now,In order to factorise a2-5a+6, we will find two numbers p and q such that p+q=-5 and pq=6Clearly,(-2)+(-3)=-5 and (-2)×(-3)=6Splitting the middle term -5 in the given quadratic as -2a-3a, we get:a2-5a+6=a2-2a-3a+6                   =(a2-2a)-(3a-6)                   =a(a-2)-3(a-2)                   =(a-3)(a-2) (a2-5a-6)(a2-5a+6)=(a-6)(a+1)(a-3)(a-2)                                                =(a+1)(a-2)(a-3)(a-6)

Question 13:

Factorize each of the following algebraic expression:
(a + 7)(a − 10) + 16

Answer 13:

(a+7)(a-10)+16=a2-10a+7a-70+16=a2-3a-54To factorise a2-3a-54 , we will find two numbers p and q such that p+q=-3 and pq=-54.Now, 6+(-9)=-3 and 6×(-9)=-54Splitting the middle term -3a in the given quadratic as -9a+6a, we get: a2-3a-54=a2-9a+6a-54                      =(a2-9a)+(6a-54)                      =a(a-9)+6(a-9)                      =(a+6)(a-9)

No comments:

Post a Comment

Contact Form

Name

Email *

Message *