RD Sharma solution class 8 chapter 7 Factorization Exercise 7.6

Exercise 7.6

Page-7.22

Question 1:

Factorize each of the following algebraic expression:
4x2 + 12xy +9y2

Answer 1:

    4x2+12xy+9y2=(2x)2+2×2x×3y+(3y)2=(2x+3y)2=(2x+3y)(2x+3y)

Question 2:

Factorize each of the following algebraic expression:
9a2 − 24ab + 16b2

Answer 2:

    9a2-24ab+16b2=(3a)2-2×3a×4b+(4b)2=(3a-4b)2=(3a-4b)(3a-4b)

Question 3:

Factorize each of the following algebraic expression:
p2q2 − 6pqr + 9r2

Answer 3:

    p2q2-6pqr+9r2=(pq)2-2×pq×3r+(3r)2=(pq-3r)2=(pq-3r)(pq-3r)

Question 4:

Factorize each of the following algebraic expression:
36a2 + 36a + 9

Answer 4:

36a2+36a+9=9(4a2+4a+1)=9(2a)2+2×2a×1+12=9(2a+1)2=9(2a+1)(2a+1)

Page-7.23

Question 5:

Factorize each of the following algebraic expression:
a2 + 2ab + b2 − 16

Answer 5:

     a2+2ab+b2-16=a2+2×a×b+b2-16=(a+b)2-42=(a+b-4)(a+b+4)

Question 6:

Factorize each of the following algebraic expression:
9z2x2 + 4xy − 4y2

Answer 6:

   9z2-x2+4xy-4y2=9z2-(x2-4xy+4y2)=9z2-[x2-2×x×2y+(2y)2]=(3z)2-(x-2y)2=[3z-(x-2y)][3z+(x-2y)]=(3z-x+2y)(3z+x-2y)=(x-2y+3z)(-x+2y+3z)

Question 7:

Factorize each of the following algebraic expression:
9a4 − 24a2b2 + 16b4 − 256

Answer 7:

    9a4-24a2b2+16b4-256=(9a4-24a2b2+16b4)-256=[(3a2)2-2×3a2×4b2+(4b2)2]-162=(3a2-4b2)2-162=[(3a2-4b2)-16][(3a2-4b2)+16]=(3a2-4b2-16)(3a2-4b2+16)

Question 8:

Factorize each of the following algebraic expression:
16 − a6 + 4a3b3 − 4b6

Answer 8:

    16-a6+4a3b3-4b6=16-(a6-4a3b3+4b6)=42-[(a3)2-2×a3×2b3+(2b3)2]=42-(a3-2b3)2=[4-(a3-2b3)][4+(a3-2b3)]=(4-a3+2b3)(4+a3-2b3)=(a3-2b3+4)(-a3+2b3+4)

Question 9:

Factorize each of the following algebraic expression:
a2 − 2ab + b2c2

Answer 9:

    a2-2ab+b2-c2=(a2-2ab+b2)-c2=(a2-2×a×b+b2)-c2=(a-b)2-c2=[(a-b)-c][(a-b)+c]=(a-b-c)(a-b+c)

Question 10:

Factorize each of the following algebraic expression:
x2 + 2x + 1 − 9y2

Answer 10:

    x2+2x+1-9y2=(x2+2x+1)-9y2=(x2+2×x×1+1)-9y2=(x+1)2-(3y)2=[(x+1)-3y][(x+1)+3y]=(x+1-3y)(x+1+3y)=(x+3y+1)(x-3y+1)

Question 11:

Factorize each of the following algebraic expression:
a2 + 4ab + 3b2

Answer 11:

    a2+4ab+3b2=a2+4ab+4b2-b2=[a2+2×a×2b+(2b)2]-b2=(a+2b)2-b2=[(a+2b)-b][(a+2b)+b]=(a+2b-b)(a+2b+b)=(a+b)(a+3b)

Question 12:

Factorize each of the following algebraic expression:
96 − 4xx2

Answer 12:

    96-4x-x2=100-4-4x-x2=100-(x2+4x+4)=100-(x2+2×x×2+22)=102-(x+2)2=[10-(x+2)][10+(x+2)]=(10-x-2)(10+x+2)=(8-x)(12+x)=(x+12)(-x+8)

Question 13:

Factorize each of the following algebraic expression:
a4 + 3a2 +4

Answer 13:

    a4+3a2+4=a4+4a2-a2+4=(a4+4a2+4)-a2=[(a2)2+2×a2×2+22]-a2=(a2+2)2-a2=[(a2+2)-a][(a2+2)+a]=(a2-a+2)((a2+a+2)

Question 14:

Factorize each of the following algebraic expression:
4x4 + 1

Answer 14:

    4x4+1=4x4+4x2+1-4x2=[(2x2)2+2×2x2×1+1]-4x2=(2x2+1)2-(2x)2=[(2x2+1)-2x][(2x2+1)+2x]=(2x2-2x+1)(2x2+2x+1)

Question 15:

Factorize each of the following algebraic expression:
4x4 + y4

Answer 15:

    4x4+y4=4x4+4x2y2+y4-4x2y2=[(2x2)2+2×2x2×y+(y2)2]-(2xy)2=(2x2+y2)2-(2xy)2=[(2x2+y2)-2xy][(2x2+y2)+2xy]=(2x2-2xy+y2)(2x2+2xy+y2)

Question 16:

Factorize each of the following algebraic expression:
(x + 2)2 − 6(x + 2) + 9

Answer 16:

   (x+2)2-6(x+2)+9=(x+2)2-2×(x+2)×3+32=[(x+2)-3]2=(x+2-3)2=(x-1)2=(x-1)(x-1)

Question 17:

Factorize each of the following algebraic expression:
25 − p2q2 − 2pq

Answer 17:

    25-p2-q2-2pq=25-(p2+2pq+q2)=52-(p2+2×p×q+q2)=52-(p+q)2=[5-(p+q)][5+(p+q)]=(5-p-q)(5+p+q)=-(p+q-5)(p+q+5)

Question 18:

Factorize each of the following algebraic expression:
x2 + 9y2 − 6xy − 25a2

Answer 18:

   x2+9y2-6xy-25a2=(x2-6xy+9y2)-25a2=[x2-2×x×3y+(3y)2]-25a2=(x-3y)2-(5a)2=[(x-3y)-5a][(x-3y)+5a]=(x-3y-5a)(x-3y+5a)

Question 19:

Factorize each of the following algebraic expression:
49 − a2 + 8ab − 16b2

Answer 19:

    49-a2+8ab-16b2=49-(a2-8ab+16b2)=49-[a2-2×a×4b+(4b)2]=72-(a-4b)2=[7-(a-4b)][7+(a-4b)]=(7-a+4b)(7+a-4b)=-(a-4b-7)(a-4b+7)=-(a-4b+7)(a-4b-7)

Question 20:

Factorize each of the following algebraic expression:
a2 − 8ab + 16b2 − 25c2

Answer 20:

 a2-8ab+16b2-25c2=(a2-8ab+16b2)-25c2=[a2-2×a×4b+(4b)2]-25c2=(a-4b)2-(5c)2=[(a-4b)-5c][(a-4b)+5c]=(a-4b-5c)(a-4b+5c)

Question 21:

Factorize each of the following algebraic expression:
x2y2 + 6y − 9

Answer 21:

x2-y2+6y-9=x2-(y2-6y+9)=x2-(y2-2×y×3+32)=x2-(y-3)2=[x-(y-3)][x+(y-3)]=(x-y+3)(x+y-3)

Question 22:

Factorize each of the following algebraic expression:
25x2 − 10x + 1 − 36y2

Answer 22:

25x2-10x+1-36y2=(25x2-10x+1)-36y2=[(5x)2-2×5x×1+1]-36y2=(5x-1)2-(6y)2=[(5x-1)-6y][(5x-1)+6y]=(5x-1-6y)(5x-1+6y)=(5x-6y-1)(5x+6y-1)

Question 23:

Factorize each of the following algebraic expression:
a2 b2 + 2bc c2

Answer 23:

a2-b2+2bc-c2=a2-(b2-2bc+c2)=a2-(b2-2×b×c+c2)=a2-(b-c)2=[(a-(b-c)][(a+(b-c)]=(a-b+c)(a+b-c)

Question 24:

Factorize each of the following algebraic expression:
a2 + 2ab + b2c2

Answer 24:

 a2+2ab+b2-c2=(a2+2ab+b2)-c2=(a2+2×a×b+b2)-c2=(a+b)2-c2=[(a+b)-c][(a+b)+c]=(a+b-c)(a+b+c)

Question 25:

Factorize each of the following algebraic expression:
49 − x2y2 + 2xy

Answer 25:

49-x2-y2+2xy=49-(x2-2xy+y2)=49-(x2-2×x×y+y2)=72-(x-y)2=[7-(x-y)][7+(x-y)]=(7-x+y)(7+x-y)=(x-y+7)(y-x+7)

Question 26:

Factorize each of the following algebraic expression:
a2 + 4b2 − 4ab − 4c2

Answer 26:

a2+4b2-4ab-4c2=(a2-4ab+4b2)-4c2=[a2-2×a×2b+(2b)2]-4c2=(a-2b)2-(2c)2=[(a-2b)-2c][(a-2b)+2c]=(a-2b-2c)(a-2b+2c)

Question 27:

Factorize each of the following algebraic expression:
x2y2 − 4xz + 4z2

Answer 27:

x2-y2-4xz+4z2=(x2-4xz+4z2)-y2=[x2-2×x×2z+(2z)2]-y2=(x-2z)2-y2=[(x-2z)-y][(x-2z)+y]=(x-2z-y)(x-2z+y)=(x+y-2z)(x-y-2z)

No comments:

Post a Comment

Contact Form

Name

Email *

Message *