RD Sharma solution class 8 chapter 6 Algebraic Expressions and Identity Exercise 6.7

Exercise 6.7

Page-6.47

Question 1:

Find the following products:
(i) (x + 4) (x + 7)
(ii) (x − 11) (x + 4)
(iii) (x + 7) (x − 5)
(iv) (x − 3) ( x − 2)
(v) (y2 − 4) (y2 − 3)
(vi) x+43x+34
(vii) (3x + 5) (3x + 11)
(viii) (2x2 − 3) (2x2 + 5)
(ix) (z2 + 2) (z2 − 3)
(x) (3x − 4y) (2x − 4y)
(xi) (3x2 − 4xy) (3x2 − 3xy)
(xii) x+15(x + 5)
(xiii) z+34z+43
(xiv) (x2 + 4) (x2 + 9)
(xv) (y2 + 12) (y2 + 6)
(xvi) y2+57y2-145
(xvii) (p2 + 16) p2-14

Answer 1:

(i) Here, we will use the identity x+ax+b=x2+a+bx+ab.
x+4x+7=x2+4+7x+4×7=x2+11x+28

(ii) Here, we will use the identity x-ax+b=x2+b-ax-ab.
x-11x+4=x2+4-11x-11×4=x2-7x-44

(iii) Here, we will use the identity​ x+ax-b=x2+a-bx-ab.
x+7x-5=x2+7-5x-7×5=x2+2x-35

(iv) Here, we will use the identity​ x-ax-b=x2-a+bx+ab.
x-3x-2=x2-3+2x+3×2=x2-5x+6

(v) Here, we will use the identity​ x-ax-b=x2-a+bx+ab.
y2-4y2-3=y22-4+3y2+4×3=y4-7y2+12

(vi) Here, we will use the identity​ x+ax+b=x2+a+bx+ab.
x+43x+34=x2+43+34x+43×34=x2+2512x+1

(vii) Here, we will use the identity​ x+ax+b=x2+a+bx+ab.
3x+53x+11=3x2+5+113x+5×11=9x2+48x+55

(viii) Here, we will use the identity​ x-ax+b=x2+b-ax-ab.
2x2-32x2+5=2x22+5-32x2-3×5=4x4+4x2-15

(ix) Here, we will use the identity​ x+ax-b=x2+a-bx-ab.
z2+2z2-3=z22+2-3z2-2×3=z4-z2-6

(x) Here, we will use the identity​ x-ax-b=x2-a+bx+ab.
3x-4y2x-4y=4y-3x4y-2x                                     (Taking common -1 from both parentheses)=4y2-3x+2x4y+3x×2x=16y2-12xy+8xy+6x2=16y2-20xy+6x2

(xi) Here, we will use the identity​ x-ax-b=x2-a+bx+ab.

3x2-4xy3x2-3xy=3x22-4xy+3xy3x2+4xy×3xy=9x4-12x3y+9x3y+12x2y2=9x4-21x3y+12x2y2

(xii) Here, we will use the identity​ x+ax+b=x2+a+bx+ab.
x+15x+5=x2+15+5x+15×5=x2+265x+1

(xiii) Here, we will use the identity​ x+ax+b=x2+a+bx+ab.
z+34z+43=z2+34+43x+34×43=z2+2512z+1

(xiv) Here, we will use the identity​ x+ax+b=x2+a+bx+ab.
x2+4x2+9=x22+4+9x2+4×9=x4+13x2+36

(xv) Here, we will use the identity​ x+ax+b=x2+a+bx+ab.
y2+12y2+6=y22+12+6y2+12×6=y4+18y2+72

(xvi) Here, we will use the identity​ x+ax-b=x2+a-bx-ab.
y2+57y2-145=y22+57-145y2-57×145=y4-7335y2-2

(xvii) Here, we will use the identity​ x+ax-b=x2+a-bx-ab.
p2+16p2-14=p22+16-14p2-16×14=p4+634p2-4

Question 2:

Evaluate the following:
(i) 102 × 106
(ii) 109 × 107
(iii) 35 × 37
(iv) 53 × 55
(v) 103 × 96
(vi) 34 × 36
(vii) 994 × 1006

Answer 2:

(i) Here, we will use the identity x+ax+b=x2+a+bx+ab
102×106=100+2100+6=1002+2+6100+2×6=10000+800+12=10812

(ii) Here, we will use the identity x+ax+b=x2+a+bx+ab
109 × 107=100+9100+7=1002+9+7100+9×7=10000+1600+63=11663

(iii) Here, we will use the identity x+ax+b=x2+a+bx+ab
35 × 37=30+530+7=302+5+730+5×7=900+360+35=1295

(iv) Here, we will use the identity x+ax+b=x2+a+bx+ab
53 × 55=50+350+5=502+3+550+3×5=2500+400+15=2915

(v) Here, we will use the identity x+ax-b=x2+a-bx-ab
103 × 96=100+3100-4=1002+3-4100-3×4=10000-100-12=9888

(vi) Here, we will use the identity x+ax+b=x2+a+bx+ab
34 × 36=30+430+6=302+4+630+4×6=900+300+24=1224

(vii) Here, we will use the identity x-ax+b=x2+b-ax-ab
994 × 1006=1000-6×1000+6=10002+6-6×1000-6×6=1000000-36=999964

No comments:

Post a Comment

Contact Form

Name

Email *

Message *