Exercise 6.6
Page-6.43Question 1:
Write the following squares of binomials as trinomials:
(i) (x + 2)2
(ii) (8a + 3b)2
(iii) (2m + 1)2
(iv) (9a+16)2
(v) (x+x22)2
(vi) (x4-y3)
(vii) (3x-13x)2
(viii) (xy-yx)2
(ix) (3a2-5b4)2
(x) (a2b − bc2)2
(xi) (2a3b+2b3a)2
(xii) (x2 − ay)2
Answer 1:
We will use the identities (a+b)2=a2+2ab+b2 and (a-b)2=a2-2ab+b2 to convert the squares of binomials as trinomials.
(i) (x+2)2=x2+2×x×2+b2=x2+4x+b2
(ii) (8a+3b)2=(8a)2+2(8a)(3b)+(6b)2=64a2+48ab+36b2
(iii) (2m+1)2=(2m)2+2(2m)(1)+12=4m2+4m+1
(iv) (9a+16)2=(9a)2+2(9a)(16)+(16)2=81a2+3a+136
(v) (x+x22)2=x2+2x(x22)+(x22)2=x2+x3+x44
(vi) (x4-y3)2=(x4)2-2(x4)(y3)+(y3)2=x216-16xy+y29
(vii) (3x-13x)2=(3x)2-2(3x)(13x)+(13x)2=9x2-2+19x2
(viii) (xy-yx)2=(xy)2-2(xy)(yx)+(yx)2=x2y2-2+y2x2
(ix) (3a2-5b4)2=(3a2)2-2(3a2)(5b4)+(5b4)2=9a24-15ab4+25b216
(x) (a2b-bc2)2=(a2b)2-2(a2b)(bc2)+(bc2)2=a4b2-2a2b2c2+b2c4
(xi) (2a3b+2b3a)2=(2a3b)2+2(2a3b)(2b3a)+(2b3a)2=4a29b2+89+4b29a2
(xii) (x2-ay)2=(x2)2-2x2(ay)+(ay)2=x4-2x2ay+a2y2
Question 2:
Find the product of the following binomials:
(i) (2x + y)(2x + y)
(ii) (a + 2b)(a − 2b)
(iii) (a2 + bc)(a2 − bc)
(iv) (4x5-3y4)(4x5+3y4)
(v) (2x+3y)(2x-3y)
(vi) (2a3 + b3)(2a3 − b3)
(vii) (x4+2x2)(x4-2x2)
(viii) (x3+1x3)(x3-1x3)
Answer 2:
(i) We will use the identity (a+b)2=a2+2ab+b2 in the given expression to find the product.
(2x+y)(2x+y)=(2x+y)2=(2x)2+2(2x)(y)+y2=4x2+4xy+y2
(ii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(a+2b)(a-2b)=a2-(2b)2=a2-4b2
(iii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(a2+bc)(a2-bc)=(a2)2-(bc)2=a4-b2c2
(iv)We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(4x5-3y4)(4x5+3y4)=(4x5)2-(3y4)2=16x225-9y216
(v) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2
(vi) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(2a3+b3)(2a3-b3)=(2a3)2-(b3)2=4a6-b6
(vii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(x4+2x2)(x4-2x2)=(x4)2-(2x2)2=x8-4x4
(viii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(x3+1x3)(x3-1x3)=(x3)2-(1x3)2=x6-1x6
Question 3:
Using the formula for squaring a binomial, evaluate the following:
(i) (102)2
(ii) (99)2
(iii) (1001)2
(iv) (999)2
(v) (703)2
Answer 3:
(i) Here, we will use the identity (a+b)2=a2+2ab+b2
(102)2=(100+2)2=(100)2+2×100×2+22=10000+400+4=10404
(ii) Here, we will use the identity (a-b)2=a2-2ab+b2
(99)2=(100-1)2=(100)2-2×100×1+12=10000-200+1=9801
(iii) Here, we will use the identity (a+b)2=a2+2ab+b2
(1001)2=(1000+1)2=(1000)2+2×1000×1+12=1000000+2000+1=1002001
(iv) Here, we will use the identity (a-b)2=a2-2ab+b2
(999)2=(1000-1)2=(1000)2-2×1000×1+12=1000000-2000+1=998001
(v) Here, we will use the identity (a+b)2=a2+2ab+b2
(703)2=(700+3)2=(700)2+2×700×3+32=490000+4200+9=494209
Question 4:
Simplify the following using the formula: (a − b)(a + b) = a2 − b2:
(i) (82)2 − (18)2
(ii) (467)2 − (33)2
(iii) (79)2 − (69)2
(iv) 197 × 203
(v) 113 × 87
(vi) 95 × 105
(vii) 1.8 × 2.2
(viii) 9.8 × 10.2
Answer 4:
Here, we will use the identity (a-b)(a+b)=a2 -b2
(i) Let us consider the following expression:
(82)2-(18)2=(82+18)(82-18)=100×64=6400
(ii) Let us consider the following expression:
(467)2-(33)2=(467+33)(467-33)=500×434=217000
(iii) Let us consider the following expression:
(79)2-(69)2=(79+69)(79-69)=148×10=1480
(iv) Let us consider the following product:
197×203
∵ 197+2032=4002=200; therefore, we will write the above product as:
197×203=(200-3)(200+3)=(200)2-(3)2=40000-9=39991
Thus, the answer is 39991.
(v) Let us consider the following product:
113×87
∵113+872=2002=100; therefore, we will write the above product as:
113×87=(100+13)(100-13)=(100)2-(13)2=10000-169=9831
Thus, the answer is 9831.
(vi) Let us consider the following product:
95×105
∵95+1052=2002=100; therefore, we will write the above product as:
95×105=(100+5)(100-5)=(100)2-(5)2=10000-25=9975
Thus, the answer is 9975.
(vii) Let us consider the following product:
1.8×2.2
∵1.8+2.22=42=2; therefore, we will write the above product as:
1.8×2.2=(2-0.2)(2+0.2)=(2)2-(0.2)2=4-0.04=3.96
Thus, the answer is 3.96.
(viii) Let us consider the following product:
9.8×10.2
∵9.8+10.22=202=10; therefore, we will write the above product as:
9.8×10.2=(10-0.2)(10+0.2)=(10)2-(0.2)2=100-0.04=99.96
Thus, the answer is 99.96.
Question 5:
Simplify the following using the identities:
(i) 582-42216
(ii) 178 × 178 − 22 × 22
(iii) 198×198-102×10296
(iv) 1.73 × 1.73 − 0.27 × 0.27
(v) 8.63×8.63-1.37×1.370.726
Answer 5:
(i) Let us consider the following expression:
582-42216
Using the identity (a+b)(a-b)=a2-b2, we get:
582-42216=(58+42)(58-42)16
⇒582-42216=100×1616⇒582-42216=100
Thus, the answer is 100.
(ii) Let us consider the following expression:
178×178-22×22
Using the identity (a+b)(a-b)=a2-b2, we get:
178×178-22×22=1782-222=(178+22)(178-22)=200×156=31200
Thus, the answer is 31200.
(iii) Let us consider the following expression:
198×198-102×10296=1982-102296
Using the identity (a+b)(a-b)=a2-b2, we get:
198×198-102×10296=1982-102296=(198+102)(198-102)96
⇒198×198-102×10296=(198+102)(198-102)96⇒198×198-102×10296=300×9696⇒198×198-102×10296=300
Thus, the answer is 300.
(iv) Let us consider the following expression:
1.73×1.73-0.27×0.27
Using the identity (a+b)(a-b)=a2-b2, we get:
1.73×1.73-0.27×0.27=1.732-0.272=(1.73+0.27)(1.73-0.27)=2×1.46=2.92
Thus, the answer is 2.92.
(v) Let us consider the following expression:
8.63×8.63-1.37×1.370.726=8.632-1.3720.726
Using the identity (a+b)(a-b)=a2-b2, we get:
8.63×8.63-1.37×1.370.726=8.632-1.3720.726=(8.63+1.37)(8.63-1.37)0.726
⇒8.63×8.63-1.37×1.370.726=(8.63+1.37)(8.63-1.37)0.726⇒8.63×8.63-1.37×1.370.726=(8.63+1.37)(8.63-1.37)0.726⇒8.63×8.63-1.37×1.370.726=10×7.260.726⇒8.63×8.63-1.37×1.370.726=10×7.26100.726⇒8.63×8.63-1.37×1.370.726=100
Thus, the answer is 100.
Question 6:
Find the value of x, if:
(i) 4x = (52)2 − (48)2
(ii) 14x = (47)2 − (33)2
(iii) 5x = (50)2 − (40)2
Answer 6:
(i) Let us consider the following equation:
4x=(52)2-(48)2
Using the identity (a+b)(a-b)=a2-b2, we get:
4x=(52)2-(48)24x=(52+48)(52-48)4x=100×4=400
⇒4x=400
⇒x=100 (Dividing both sides by 4)
(ii) Let us consider the following equation:
14x=(47)2-(33)2
Using the identity (a+b)(a-b)=a2-b2, we get:
14x=(47)2-(33)214x=(47+33)(47-33)14x=80×14=1120
⇒14x=1120
⇒x=80 (Dividing both sides by 14)
(iii) Let us consider the following equation:
5x=(50)2-(40)2
Using the identity (a+b)(a-b)=a2-b2, we get:
5x=(50)2-(40)25x=(50+40)(50-40)5x=90×10=900
⇒5x=900
⇒x=180 (Dividing both sides by 5)
Question 7:
If x+1x=20, find the value of x2+1x2.
Answer 7:
Let us consider the following equation:
x+1x=20
Squaring both sides, we get:
(x+1x)2=(20)2=400⇒(x+1x)2=400⇒x2+2×x×1x+(1x)2=400 [(a+b)2=a2 +b2 +2ab]⇒x2+2+1x2=400
⇒x2+1x2=398 (Subtracting 2 from both sides)
Thus, the answer is 398.
Question 8:
If x-1x=3, find the values of x2+1x2 and x4+1x4.
Answer 8:
Let us consider the following equation:
x-1x=3
Squaring both sides, we get:
(x-1x)2=(3)2=9⇒(x-1x)2=9⇒x2-2×x×1x+(1x)2=9⇒x2-2+1x2=9
⇒x2+1x2=11 (Adding 2 to both sides)
Squaring both sides again, we get:
(x2+1x2)2=(11)2=121⇒(x2+1x2)2=121⇒(x2)2+2(x2)(1x2)+(1x2)2=121⇒x4+2+1x4=121
⇒x4+1x4=119
Question 9:
If x2+1x2=18, find the values of x+1x and x-1x.
Answer 9:
Let us consider the following expression:
x+1x
Squaring the above expression, we get:
(x+1x)2=x2+2×x×1x+(1x)2=x2-2+1x2 [(a+b)2=a2+b2+2ab]⇒(x+1x)2=x2+2+1x2
⇒(x+1x)2=20 (∵ x2+1x2=18)
⇒x+1x=±√20 (Taking square root of both sides)
Now, let us consider the following expression:
x-1x
Squaring the above expression, we get:
(x-1x)2=x2-2×x×1x+(1x)2=x2-2+1x2 [(a-b)2=a2+b2-2ab]⇒(x-1x)2=x2-2+1x2
⇒(x-1x)2=16 (∵ x2+1x2=18)
⇒x-1x=±4 (Taking square root of both sides)
Question 10:
If x + y = 4 and xy = 2, find the value of x2 + y2
Answer 10:
We have:
(x+y)2=x2+2xy+y2⇒x2+y2=(x+y)2-2xy
⇒x2+y2=42-2×2 (∵ x+y=4 and xy=2)
⇒x2+y2=16-4⇒x2+y2=12
Question 11:
If x − y = 7 and xy = 9, find the value of x2 + y2
Answer 11:
We have:
(x-y)2=x2-2xy+y2⇒x2+y2=(x-y)2+2xy
⇒x2+y2=72+2×9 (∵ x-y=7 and xy=9 )
⇒x2+y2=72+2×9⇒x2+y2=49+18⇒x2+y2=67
Question 12:
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
Answer 12:
We have:
(3x+5y)2=(3x)2+2(3x)(5y)+(5y)2⇒(3x+5y)2=9x2+30xy+25y2⇒9x2+25y2=(3x+5y)2-30xy
⇒9x2+25y2=112-30×2 (∵ 3x+5y=11 and xy=2)
⇒9x2+25y2=121-60⇒9x2+25y2=61
Question 13:
Find the values of the following expressions:
(i) 16x2 + 24x + 9, when x=74
(ii) 64x2 + 81y2 + 144xy, when x = 11 and y=43
(iii) 81x2 + 16y2 − 72xy, when x=23 and y=34
Answer 13:
(i) Let us consider the following expression:
16x2+24x+9
Now
16x2+24x+9=(4x+3)2 (Using identity (a+b)2=a2+2ab+b2)
⇒16x2+24x+9=(4×74+3)2 (Substituting x=74)⇒16x2+24x+9=(7+3)2⇒16x2+24x+9=102⇒16x2+24x+9=100
(ii) Let us consider the following expression:
64x2+81y2+144xy
Now
64x2+81y2+144xy=(8x+9y)2 (Using identity (a+b)2=a2+2ab+b2)
⇒64x2+81y2+144xy=[8(11)+9(43)]2 (Substituting x=11 and y=43)⇒64x2+81y2+144xy=[88+12]2 ⇒64x2+81y2+144xy=1002 ⇒64x2+81y2+144xy=10000
(iii) Let us consider the following expression:
81x2+16y2-72xy
Now
81x2+16y2-72xy=(9x-4y)2 (Using identity (a+b)2=a2-2ab+b2)
⇒81x2+16y2-72xy=[9(23)-4(34)]2 (Substituting x=23and y=34)⇒81x2+16y2-72xy=[6-3]2 ⇒81x2+16y2-72xy=32 ⇒81x2+16y2-72xy=9
Question 14:
If x+1x=9, find the value of x4+1x4.
Answer 14:
Let us consider the following equation:
x+1x=9
Squaring both sides, we get:
(x+1x)2=(9)2=81⇒(x+1x)2=81⇒x2+2×x×1x+(1x)2=81⇒x2+2+1x2=81
⇒x2+1x2=79 (Subtracting 2 from both sides)
Now, squaring both sides again, we get:
(x2+1x2)2=(79)2=6241⇒(x2+1x2)2=6241⇒(x2)2+2(x2)(1x2)+(1x2)2=6241⇒x4+2+1x4=6241
⇒x4+1x4=6239
Question 15:
If x+1x=12, find the value of x-1x.
Answer 15:
Let us consider the following equation:
x+1x=12
Squaring both sides, we get:
(x+1x)2=(12)2=144⇒(x+1x)2=144⇒x2+2×x×1x+(1x)2=144 [ (a+b)2=a2+b2+2ab]⇒x2+2+1x2=144
⇒x2+1x2=142 (Subtracting 2 from both sides)
Now
(x-1x)2=x2-2×x×1x+(1x)2=x2-2+1x2 [(a-b)2=a2+b2-2ab]⇒(x-1x)2=x2-2+1x2⇒(x-1x)2=142-2 (∵ x2+1x2=142)⇒(x-1x)2=140 ⇒x-1x=±√140 (Taking square root)
Question 16:
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Answer 16:
We will use the identity (a+b)(a-b)=a2-b2 to obtain the value of xy.
Squaring (2x+3y) and (2x-3y) both and then subtracting them, we get:
(2x+3y)2-(2x-3y)2={(2x+3y)+(2x-3y)}{(2x+3y)-(2x-3y)}=4x×6y=24xy⇒(2x+3y)2-(2x-3y)2=24xy
⇒24xy=(2x+3y)2-(2x-3y)2⇒24xy=(14)2-(2)2⇒24xy=(14+2)(14-2) (∵ (a+b)(a-b)=a2-b2)⇒24xy=16×12⇒xy=16×1224 (Dividing both sides by 24)⇒xy=8
Question 17:
If x2 + y2 = 29 and xy = 2, find the value of
(i) x + y
(ii) x − y
(iii) x4 + y4
Answer 17:
(i) We have:
(x+y)2=x2+2xy+y2⇒(x+y)=±√x2+2xy+y2⇒(x+y)=±√29+2×2 ( ∵ x2+y2=29 and xy=2)⇒(x+y)=±√29+4⇒(x+y)=±√33
(ii) We have:
(x-y)2=x2-2xy+y2⇒(x-y)=±√x2-2xy+y2⇒(x+y)=±√29-2×2 (∵ x2+y2=29 and xy=2)⇒(x+y)=±√29-4⇒(x+y)=±√25⇒(x+y)=±5
(iii) We have:
(x2+y2)2=x4+2x2y2+y4⇒x4+y4=(x2+y2)2-2x2y2⇒x4+y4=(x2+y2)2-2(xy)2⇒x4+y4=292-2(2)2 (∵ x2+y2=29 and xy=2)⇒x4+y4=841-8⇒x4+y4=833
Question 18:
What must be added to each of the following expressions to make it a whole square?
(i) 4x2 − 12x + 7
(ii) 4x2 − 20x + 20
Answer 18:
(i) Let us consider the following expression:
4x2-12x+7
The above expression can be written as:
4x2-12x+7=(2x)2-2×2x×3+7
It is evident that if 2x is considered as the first term and 3 is considered as the second term, 2 is required to be added to the above expression to make it a perfect square. Therefore, 7 must become 9.
Therefore, adding and subtracting 2 in the above expression, we get:
(4x2-12x+7)+2-2={(2x)2-2×2x×3+7}+2-2={(2x)2-2×2x×3+9}-2=(2x+3)2-2
Thus, the answer is 2.
(ii) Let's consider the following expression:
4x2-20x+20
The above expression can be written as:
4x2-20x+20=(2x)2-2×2x×5+20
It is evident that if 2x is considered as the first term and 5 is considered as the second term, 5 is required to be added to the above expression to make it a perfect square. Therefore, number 20 must become 25.
Therefore, adding and subtracting 5 in the above expression, we get:
(4x2-20x+20+5)-5={(2x)2-2×2x×5+20}+5-5={(2x)2-2×2x×5+25}-5=(2x+5)2-5
Thus, the answer is 5.
Question 19:
Simplify:
(i) (x − y)(x + y) (x2 + y2)(x4 + y2)
(ii) (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
(iii) (4m − 8n)2 + (7m + 8n)2
(iv) (2.5p − 1.5q)2 − (1.5p − 2.5q)2
(v) (m2 − n2m)2 + 2m3n2
Answer 19:
To simplify, we will proceed as follows:
(i)
(i)
Question 20:
Show that:
(i) (3x + 7)2 − 84x = (3x − 7)2
(ii) (9a − 5b)2 + 180ab = (9a + 5b)2
(iii)
(iv) (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
(v) (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Answer 20:
No comments:
Post a Comment