Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

RD Sharma solution class 8 chapter 6 Algebraic Expressions and Identity Exercise 6.6

Exercise 6.6

Page-6.43

Question 1:

Write the following squares of binomials as trinomials:
(i) (x + 2)2
(ii) (8a + 3b)2
(iii) (2m + 1)2
(iv) (9a+16)2
(v) (x+x22)2
(vi) (x4-y3)
(vii) (3x-13x)2
(viii) (xy-yx)2
(ix) (3a2-5b4)2
(x) (a2bbc2)2
(xi) (2a3b+2b3a)2
(xii) (x2ay)2

Answer 1:

 We will use the identities (a+b)2=a2+2ab+b2 and (a-b)2=a2-2ab+b2 to convert the squares of binomials as trinomials.

(i) (x+2)2=x2+2×x×2+b2=x2+4x+b2

(ii) (8a+3b)2=(8a)2+2(8a)(3b)+(6b)2=64a2+48ab+36b2

(iii) (2m+1)2=(2m)2+2(2m)(1)+12=4m2+4m+1

(iv) (9a+16)2=(9a)2+2(9a)(16)+(16)2=81a2+3a+136

(v) (x+x22)2=x2+2x(x22)+(x22)2=x2+x3+x44

(vi) (x4-y3)2=(x4)2-2(x4)(y3)+(y3)2=x216-16xy+y29


(vii) (3x-13x)2=(3x)2-2(3x)(13x)+(13x)2=9x2-2+19x2

(viii) (xy-yx)2=(xy)2-2(xy)(yx)+(yx)2=x2y2-2+y2x2


(ix) (3a2-5b4)2=(3a2)2-2(3a2)(5b4)+(5b4)2=9a24-15ab4+25b216

(x) (a2b-bc2)2=(a2b)2-2(a2b)(bc2)+(bc2)2=a4b2-2a2b2c2+b2c4




(xi) (2a3b+2b3a)2=(2a3b)2+2(2a3b)(2b3a)+(2b3a)2=4a29b2+89+4b29a2



(xii) (x2-ay)2=(x2)2-2x2(ay)+(ay)2=x4-2x2ay+a2y2

Question 2:

Find the product of the following binomials:
(i) (2x + y)(2x + y)
(ii) (a + 2b)(a − 2b)
(iii) (a2 + bc)(a2 bc)
(iv) (4x5-3y4)(4x5+3y4)
(v) (2x+3y)(2x-3y)
(vi) (2a3 + b3)(2a3b3)
(vii) (x4+2x2)(x4-2x2)
(viii) (x3+1x3)(x3-1x3)

Answer 2:

(i) We will use the identity (a+b)2=a2+2ab+b2  in the given expression to find the product.
(2x+y)(2x+y)=(2x+y)2=(2x)2+2(2x)(y)+y2=4x2+4xy+y2

(ii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(a+2b)(a-2b)=a2-(2b)2=a2-4b2

(iii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(a2+bc)(a2-bc)=(a2)2-(bc)2=a4-b2c2

(iv)We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(4x5-3y4)(4x5+3y4)=(4x5)2-(3y4)2=16x225-9y216

(v) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2

(vi) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(2a3+b3)(2a3-b3)=(2a3)2-(b3)2=4a6-b6

(vii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.
(x4+2x2)(x4-2x2)=(x4)2-(2x2)2=x8-4x4

(viii) We will use the identity (a+b)(a-b)=a2-b2 in the given expression to find the product.

(x3+1x3)(x3-1x3)=(x3)2-(1x3)2=x6-1x6

Question 3:

Using the formula for squaring a binomial, evaluate the following:
(i) (102)2
(ii) (99)2
(iii) (1001)2
(iv) (999)2
(v) (703)2

Answer 3:

(i) Here, we will use the identity (a+b)2=a2+2ab+b2
(102)2=(100+2)2=(100)2+2×100×2+22=10000+400+4=10404

(ii) Here, we will use the identity (a-b)2=a2-2ab+b2
(99)2=(100-1)2=(100)2-2×100×1+12=10000-200+1=9801

(iii) Here, we will use the identity (a+b)2=a2+2ab+b2
(1001)2=(1000+1)2=(1000)2+2×1000×1+12=1000000+2000+1=1002001

(iv) Here, we will use the identity (a-b)2=a2-2ab+b2
(999)2=(1000-1)2=(1000)2-2×1000×1+12=1000000-2000+1=998001

(v) Here, we will use the identity (a+b)2=a2+2ab+b2
(703)2=(700+3)2=(700)2+2×700×3+32=490000+4200+9=494209

Question 4:

Simplify the following using the formula: (ab)(a + b) = a2b2:
(i) (82)2 − (18)2
(ii) (467)2 − (33)2
(iii) (79)2 − (69)2
(iv) 197 × 203
(v) 113 × 87
(vi) 95 × 105
(vii) 1.8 × 2.2
(viii) 9.8 × 10.2

Answer 4:

Here, we will use the identity (a-b)(a+b)=a2 -b2

(i) Let us consider the following expression:

(82)2-(18)2=(82+18)(82-18)=100×64=6400

(ii) Let us consider the following expression:

(467)2-(33)2=(467+33)(467-33)=500×434=217000

(iii) Let us consider the following expression:

(79)2-(69)2=(79+69)(79-69)=148×10=1480

(iv) Let us consider the following product:

197×203

 197+2032=4002=200; therefore, we will write the above product as:
197×203=(200-3)(200+3)=(200)2-(3)2=40000-9=39991

Thus, the answer is 39991.

(v) Let us consider the following product:

113×87

113+872=2002=100; therefore, we will write the above product as:
113×87=(100+13)(100-13)=(100)2-(13)2=10000-169=9831

Thus, the answer is 9831.

(vi) Let us consider the following product:

95×105

95+1052=2002=100; therefore, we will write the above product as:
95×105=(100+5)(100-5)=(100)2-(5)2=10000-25=9975

Thus, the answer is 9975.

(vii) Let us consider the following product:

1.8×2.2

1.8+2.22=42=2; therefore, we will write the above product as:
1.8×2.2=(2-0.2)(2+0.2)=(2)2-(0.2)2=4-0.04=3.96

Thus, the answer is 3.96.

(viii) Let us consider the following product:

9.8×10.2

9.8+10.22=202=10; therefore, we will write the above product as:
9.8×10.2=(10-0.2)(10+0.2)=(10)2-(0.2)2=100-0.04=99.96

Thus, the answer is 99.96.

Question 5:

Simplify the following using the identities:
(i) 582-42216
(ii) 178 × 178 − 22 × 22
(iii) 198×198-102×10296
(iv) 1.73 × 1.73 − 0.27 × 0.27
(v) 8.63×8.63-1.37×1.370.726

Answer 5:

(i) Let us consider the following expression:

582-42216
Using the identity (a+b)(a-b)=a2-b2, we get:

582-42216=(58+42)(58-42)16
582-42216=100×1616582-42216=100

Thus, the answer is 100.

(ii) Let us consider the following expression:

178×178-22×22
Using the identity (a+b)(a-b)=a2-b2, we get:

178×178-22×22=1782-222=(178+22)(178-22)=200×156=31200
Thus, the answer is 31200.

(iii) Let us consider the following expression:

198×198-102×10296=1982-102296
Using the identity (a+b)(a-b)=a2-b2, we get:

198×198-102×10296=1982-102296=(198+102)(198-102)96
198×198-102×10296=(198+102)(198-102)96198×198-102×10296=300×9696198×198-102×10296=300

Thus, the answer is 300.

(iv) Let us consider the following expression:

1.73×1.73-0.27×0.27
Using the identity (a+b)(a-b)=a2-b2, we get:

1.73×1.73-0.27×0.27=1.732-0.272=(1.73+0.27)(1.73-0.27)=2×1.46=2.92
Thus, the answer is 2.92.

(v) Let us consider the following expression:

8.63×8.63-1.37×1.370.726=8.632-1.3720.726
Using the identity (a+b)(a-b)=a2-b2, we get:

8.63×8.63-1.37×1.370.726=8.632-1.3720.726=(8.63+1.37)(8.63-1.37)0.726
8.63×8.63-1.37×1.370.726=(8.63+1.37)(8.63-1.37)0.7268.63×8.63-1.37×1.370.726=(8.63+1.37)(8.63-1.37)0.7268.63×8.63-1.37×1.370.726=10×7.260.7268.63×8.63-1.37×1.370.726=10×7.26100.7268.63×8.63-1.37×1.370.726=100

Thus, the answer is 100.

Question 6:

Find the value of x, if:
(i) 4x = (52)2 − (48)2
(ii) 14x = (47)2 − (33)2
(iii) 5x = (50)2 − (40)2

Answer 6:

(i) Let us consider the following equation:

4x=(52)2-(48)2
Using the identity (a+b)(a-b)=a2-b2, we get:
4x=(52)2-(48)24x=(52+48)(52-48)4x=100×4=400
4x=400
x=100        (Dividing both sides by 4)

(ii) Let us consider the following equation:

14x=(47)2-(33)2
Using the identity (a+b)(a-b)=a2-b2, we get:
14x=(47)2-(33)214x=(47+33)(47-33)14x=80×14=1120
14x=1120
x=80        (Dividing both sides by 14)

(iii) Let us consider the following equation:

5x=(50)2-(40)2
Using the identity (a+b)(a-b)=a2-b2, we get:
5x=(50)2-(40)25x=(50+40)(50-40)5x=90×10=900
5x=900
x=180        (Dividing both sides by 5)

Question 7:

If x+1x=20, find the value of x2+1x2.

Answer 7:

Let us consider the following equation:

x+1x=20
Squaring both sides, we get:

(x+1x)2=(20)2=400(x+1x)2=400x2+2×x×1x+(1x)2=400                   [(a+b)2=a2 +b2 +2ab]x2+2+1x2=400
x2+1x2=398                               (Subtracting 2 from both sides)

Thus, the answer is 398.

Question 8:

If x-1x=3, find the values of x2+1x2 and x4+1x4.

Answer 8:

Let us consider the following equation:

x-1x=3

Squaring both sides, we get:

(x-1x)2=(3)2=9(x-1x)2=9x2-2×x×1x+(1x)2=9x2-2+1x2=9
x2+1x2=11                               (Adding 2 to both sides)

Squaring both sides again, we get:

(x2+1x2)2=(11)2=121(x2+1x2)2=121(x2)2+2(x2)(1x2)+(1x2)2=121x4+2+1x4=121
x4+1x4=119

Question 9:

If x2+1x2=18, find the values of x+1x and x-1x.

Answer 9:

Let us consider the following expression:

x+1x
Squaring the above expression, we get:

(x+1x)2=x2+2×x×1x+(1x)2=x2-2+1x2                       [(a+b)2=a2+b2+2ab](x+1x)2=x2+2+1x2
(x+1x)2=20                                                                     ( x2+1x2=18)
x+1x=±20                                                            (Taking square root of both sides)

Now, let us consider the following expression:

x-1x
Squaring the above expression, we get:

(x-1x)2=x2-2×x×1x+(1x)2=x2-2+1x2                     [(a-b)2=a2+b2-2ab](x-1x)2=x2-2+1x2
(x-1x)2=16                                 ( x2+1x2=18)
x-1x=±4                                     (Taking square root of both sides)

Question 10:

If x + y = 4 and xy = 2, find the value of x2 + y2

Answer 10:

We have:

(x+y)2=x2+2xy+y2x2+y2=(x+y)2-2xy
x2+y2=42-2×2                ( x+y=4 and xy=2)
x2+y2=16-4x2+y2=12

Question 11:

If xy = 7 and xy = 9, find the value of x2 + y2

Answer 11:

We have:

(x-y)2=x2-2xy+y2x2+y2=(x-y)2+2xy
x2+y2=72+2×9                     ( x-y=7 and xy=9 )
x2+y2=72+2×9x2+y2=49+18x2+y2=67

Page-6.44

Question 12:

If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2

Answer 12:

We have:

(3x+5y)2=(3x)2+2(3x)(5y)+(5y)2(3x+5y)2=9x2+30xy+25y29x2+25y2=(3x+5y)2-30xy
9x2+25y2=112-30×2                          ( 3x+5y=11 and xy=2)
9x2+25y2=121-609x2+25y2=61

Question 13:

Find the values of the following expressions:
(i) 16x2 + 24x + 9, when x=74
(ii) 64x2 + 81y2 + 144xy, when x = 11 and y=43
(iii) 81x2 + 16y2 − 72xy, when x=23 and y=34

Answer 13:

(i) Let us consider the following expression:

16x2+24x+9

Now

16x2+24x+9=(4x+3)2                                 (Using identity (a+b)2=a2+2ab+b2)
16x2+24x+9=(4×74+3)2            (Substituting x=74)16x2+24x+9=(7+3)216x2+24x+9=10216x2+24x+9=100


(ii) Let us consider the following expression:

64x2+81y2+144xy

Now

64x2+81y2+144xy=(8x+9y)2                                (Using identity (a+b)2=a2+2ab+b2)
64x2+81y2+144xy=[8(11)+9(43)]2                  (Substituting x=11 and y=43)64x2+81y2+144xy=[88+12]2 64x2+81y2+144xy=1002 64x2+81y2+144xy=10000

(iii) Let us consider the following expression:

81x2+16y2-72xy

Now

81x2+16y2-72xy=(9x-4y)2                                  (Using identity (a+b)2=a2-2ab+b2)
81x2+16y2-72xy=[9(23)-4(34)]2        (Substituting x=23and y=34)81x2+16y2-72xy=[6-3]2  81x2+16y2-72xy=32 81x2+16y2-72xy=9

Question 14:

If x+1x=9, find the value of x4+1x4.

Answer 14:

Let us consider the following equation:

x+1x=9

Squaring both sides, we get:

(x+1x)2=(9)2=81(x+1x)2=81x2+2×x×1x+(1x)2=81x2+2+1x2=81
x2+1x2=79                               (Subtracting 2 from both sides)

Now, squaring both sides again, we get:

(x2+1x2)2=(79)2=6241(x2+1x2)2=6241(x2)2+2(x2)(1x2)+(1x2)2=6241x4+2+1x4=6241
x4+1x4=6239

Question 15:

If x+1x=12, find the value of x-1x.

Answer 15:

Let us consider the following equation:

x+1x=12

Squaring both sides, we get:

(x+1x)2=(12)2=144(x+1x)2=144x2+2×x×1x+(1x)2=144                      [ (a+b)2=a2+b2+2ab]x2+2+1x2=144
x2+1x2=142                               (Subtracting 2 from both sides)

Now

(x-1x)2=x2-2×x×1x+(1x)2=x2-2+1x2                         [(a-b)2=a2+b2-2ab](x-1x)2=x2-2+1x2(x-1x)2=142-2                                                  ( x2+1x2=142)(x-1x)2=140     x-1x=±140                                                    (Taking square root)

Question 16:

If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]

Answer 16:

We will use the identity (a+b)(a-b)=a2-b2 to obtain the value of xy.
Squaring (2x+3y) and (2x-3y) both and then subtracting them, we get:
(2x+3y)2-(2x-3y)2={(2x+3y)+(2x-3y)}{(2x+3y)-(2x-3y)}=4x×6y=24xy(2x+3y)2-(2x-3y)2=24xy
24xy=(2x+3y)2-(2x-3y)224xy=(14)2-(2)224xy=(14+2)(14-2)                        ( (a+b)(a-b)=a2-b2)24xy=16×12xy=16×1224                                       (Dividing both sides by 24)xy=8

Question 17:

If x2 + y2 = 29 and xy = 2, find the value of
(i) x + y
(ii) x − y
(iii) x4 + y4

Answer 17:

(i) We have:

(x+y)2=x2+2xy+y2(x+y)=±x2+2xy+y2(x+y)=±29+2×2                (  x2+y2=29 and xy=2)(x+y)=±29+4(x+y)=±33

(ii) We have:

(x-y)2=x2-2xy+y2(x-y)=±x2-2xy+y2(x+y)=±29-2×2                 ( x2+y2=29 and xy=2)(x+y)=±29-4(x+y)=±25(x+y)=±5

(iii) We have:

(x2+y2)2=x4+2x2y2+y4x4+y4=(x2+y2)2-2x2y2x4+y4=(x2+y2)2-2(xy)2x4+y4=292-2(2)2                             ( x2+y2=29 and xy=2)x4+y4=841-8x4+y4=833

Question 18:

What must be added to each of the following expressions to make it a whole square?
(i) 4x2 − 12x + 7
(ii) 4x2 − 20x + 20

Answer 18:

(i) Let us consider the following expression:

4x2-12x+7
The above expression can be written as:

4x2-12x+7=(2x)2-2×2x×3+7
It is evident that if 2x is considered as the first term and 3 is considered as the second term, 2 is required to be added to the above expression to make it a perfect square. Therefore, 7 must become 9.

Therefore, adding and subtracting 2 in the above expression, we get:

(4x2-12x+7)+2-2={(2x)2-2×2x×3+7}+2-2={(2x)2-2×2x×3+9}-2=(2x+3)2-2
Thus, the answer is 2.

(ii) Let's consider the following expression:

4x2-20x+20
The above expression can be written as:

4x2-20x+20=(2x)2-2×2x×5+20
It is evident that if 2x is considered as the first term and 5 is considered as the second term, 5 is required to be added to the above expression to make it a perfect square. Therefore, number 20 must become 25.

Therefore, adding and subtracting 5 in the above expression, we get:

(4x2-20x+20+5)-5={(2x)2-2×2x×5+20}+5-5={(2x)2-2×2x×5+25}-5=(2x+5)2-5
Thus, the answer is 5.

Question 19:

Simplify:
(i) (x − y)(x + y) (x2 + y2)(x4 + y2)
(ii) (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
(iii) (4m − 8n)2 + (7m + 8n)2
(iv) (2.5p − 1.5q)2 − (1.5p − 2.5q)2
(v) (m2n2m)2 + 2m3n2

Answer 19:

To simplify, we will proceed as follows:
(i) 
(i)

(ii) 2x-12x+14x2+116x4+1=2x2-124x2+116x4+1             a+ba-b=a2-b2      =4x2-14x2+116x4+1           =4x22-12216x4+1                    a+ba-b=a2-b2=16x4-1  16x4+1        =16x42 - 12                                       a+ba-b=a2-b2=256x8-1

(iii) 7m-8n2+7m+8n2=27m2+28n2                      ∵ a-b2+a+b2=2a2+2b2=98m2+128n2


(iv) 2.5p-1.5q2-1.5p-2.5q2=2.5p2+1.5q2-22.5p1.5q-1.5p2+2.5q2-21.5p2.5q =2.5p2+1.5q2-22.5p1.5q-1.5p2-2.5q2+21.5p2.5q=2.5p2-1.5p2+1.5q2-2.5q2 =2.5p+1.5p2.5p-1.5p+1.5q+2.51.5q-2.5q                   a+ba-b=a2-b2                    =4p×p+4q×-q=4p2-4q2 =4p2-4q2                                                    

v) m2-n2m2+2m3n2=m22+n2m2                                           a-b2+2ab=a2+b2=m4+n4m2 

Question 20:

Show that:
(i) (3x + 7)2 − 84x = (3x − 7)2
(ii) (9a − 5b)2 + 180ab = (9a + 5b)2
(iii) 4m3-3n42+2mn=16m29+9n216
(iv) (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
(v) (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0

Answer 20:


(i) LHS=3x+72-84x=3x+72-4×3x×7=3x-72          a+b2-4ab=a-b2=RHSBecause LHS is equal to RHS, the given equation is verified.


(ii) LHS=9a-5b2+180ab=9a-5b2+4×9a×5b=9a+5b2                                   a-b2+4ab=a+b2=RHSBecause LHS is equal to RHS, the given equation is verified.


(iii) LHS=4m3-3n42+2mn=4m3-3n42+2×4m3×3n4=4m32+3n42                                 a-b2+2ab=a2+b2=16m29+9n216=RHSBecause LHS is equal to RHS, the given equation is verified.


(iv) LHS=4pq+3q2-4pq-3q2=44pq3q                         a+b2-a+b2=4ab=48pq2 =RHSBecause LHS is equal to RHS, the given equation is verified.


(v) LHS=a-ba+b+b-cb+c+c+ac-a=a2-b2+b2-c2+c2-a2                                                   a+ba-b=a2-b2=a2-b2+b2-c2+c2-a2  =0=RHSBecause LHS is equal to RHS, the given equation is verified.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *