RD Sharma solution class 8 chapter 6 Algebraic Expressions and Identity Exercise 6.6

Exercise 6.6

Page-6.43

Question 1:

Write the following squares of binomials as trinomials:
(i) (x + 2)2
(ii) (8a + 3b)2
(iii) (2m + 1)2
(iv) 9a+162
(v) x+x222
(vi) x4-y3
(vii) 3x-13x2
(viii) xy-yx2
(ix) 3a2-5b42
(x) (a2bbc2)2
(xi) 2a3b+2b3a2
(xii) (x2ay)2

Answer 1:

 We will use the identities a+b2=a2+2ab+b2 and a-b2=a2-2ab+b2 to convert the squares of binomials as trinomials.

(i) x+22=x2+2×x×2+b2=x2+4x+b2

(ii) 8a+3b2=8a2+28a3b+6b2=64a2+48ab+36b2

(iii) 2m+12=2m2+22m1+12=4m2+4m+1

(iv) 9a+162=9a2+29a16+162=81a2+3a+136

(v) x+x222=x2+2xx22+x222=x2+x3+x44

(vi) x4-y32=x42-2x4y3+y32=x216-16xy+y29


(vii) 3x-13x2=3x2-23x13x+13x2=9x2-2+19x2

(viii) xy-yx2=xy2-2xyyx+yx2=x2y2-2+y2x2


(ix) 3a2-5b42=3a22-23a25b4+5b42=9a24-15ab4+25b216

(x) a2b-bc22=a2b2-2a2bbc2+bc22=a4b2-2a2b2c2+b2c4




(xi) 2a3b+2b3a2=2a3b2+22a3b2b3a+2b3a2=4a29b2+89+4b29a2



(xii) x2-ay2=x22-2x2ay+ay2=x4-2x2ay+a2y2

Question 2:

Find the product of the following binomials:
(i) (2x + y)(2x + y)
(ii) (a + 2b)(a − 2b)
(iii) (a2 + bc)(a2 bc)
(iv) 4x5-3y44x5+3y4
(v) 2x+3y2x-3y
(vi) (2a3 + b3)(2a3b3)
(vii) x4+2x2x4-2x2
(viii) x3+1x3x3-1x3

Answer 2:

(i) We will use the identity a+b2=a2+2ab+b2  in the given expression to find the product.
2x+y2x+y=2x+y2=2x2+22xy+y2=4x2+4xy+y2

(ii) We will use the identity a+ba-b=a2-b2 in the given expression to find the product.
a+2ba-2b=a2-2b2=a2-4b2

(iii) We will use the identity a+ba-b=a2-b2 in the given expression to find the product.
a2+bca2-bc=a22-bc2=a4-b2c2

(iv)We will use the identity a+ba-b=a2-b2 in the given expression to find the product.
4x5-3y44x5+3y4=4x52-3y42=16x225-9y216

(v) We will use the identity a+ba-b=a2-b2 in the given expression to find the product.
2x+3y2x-3y=2x2-3y2=4x2-9y2

(vi) We will use the identity a+ba-b=a2-b2 in the given expression to find the product.
2a3+b32a3-b3=2a32-b32=4a6-b6

(vii) We will use the identity a+ba-b=a2-b2 in the given expression to find the product.
x4+2x2x4-2x2=x42-2x22=x8-4x4

(viii) We will use the identity a+ba-b=a2-b2 in the given expression to find the product.

x3+1x3x3-1x3=x32-1x32=x6-1x6

Question 3:

Using the formula for squaring a binomial, evaluate the following:
(i) (102)2
(ii) (99)2
(iii) (1001)2
(iv) (999)2
(v) (703)2

Answer 3:

(i) Here, we will use the identity a+b2=a2+2ab+b2
1022=100+22=1002+2×100×2+22=10000+400+4=10404

(ii) Here, we will use the identity a-b2=a2-2ab+b2
992=100-12=1002-2×100×1+12=10000-200+1=9801

(iii) Here, we will use the identity a+b2=a2+2ab+b2
10012=1000+12=10002+2×1000×1+12=1000000+2000+1=1002001

(iv) Here, we will use the identity a-b2=a2-2ab+b2
9992=1000-12=10002-2×1000×1+12=1000000-2000+1=998001

(v) Here, we will use the identity a+b2=a2+2ab+b2
7032=700+32=7002+2×700×3+32=490000+4200+9=494209

Question 4:

Simplify the following using the formula: (ab)(a + b) = a2b2:
(i) (82)2 − (18)2
(ii) (467)2 − (33)2
(iii) (79)2 − (69)2
(iv) 197 × 203
(v) 113 × 87
(vi) 95 × 105
(vii) 1.8 × 2.2
(viii) 9.8 × 10.2

Answer 4:

Here, we will use the identity (a-b)(a+b)=a2 -b2

(i) Let us consider the following expression:

822-182=82+1882-18=100×64=6400

(ii) Let us consider the following expression:

4672-332=467+33467-33=500×434=217000

(iii) Let us consider the following expression:

792-692=79+6979-69=148×10=1480

(iv) Let us consider the following product:

197×203

 197+2032=4002=200; therefore, we will write the above product as:
197×203=200-3200+3=2002-32=40000-9=39991

Thus, the answer is 39991.

(v) Let us consider the following product:

113×87

113+872=2002=100; therefore, we will write the above product as:
113×87=100+13100-13=1002-132=10000-169=9831

Thus, the answer is 9831.

(vi) Let us consider the following product:

95×105

95+1052=2002=100; therefore, we will write the above product as:
95×105=100+5100-5=1002-52=10000-25=9975

Thus, the answer is 9975.

(vii) Let us consider the following product:

1.8×2.2

1.8+2.22=42=2; therefore, we will write the above product as:
1.8×2.2=2-0.22+0.2=22-0.22=4-0.04=3.96

Thus, the answer is 3.96.

(viii) Let us consider the following product:

9.8×10.2

9.8+10.22=202=10; therefore, we will write the above product as:
9.8×10.2=10-0.210+0.2=102-0.22=100-0.04=99.96

Thus, the answer is 99.96.

Question 5:

Simplify the following using the identities:
(i) 582-42216
(ii) 178 × 178 − 22 × 22
(iii) 198×198-102×10296
(iv) 1.73 × 1.73 − 0.27 × 0.27
(v) 8.63×8.63-1.37×1.370.726

Answer 5:

(i) Let us consider the following expression:

582-42216
Using the identity a+ba-b=a2-b2, we get:

582-42216=58+4258-4216
582-42216=100×1616582-42216=100

Thus, the answer is 100.

(ii) Let us consider the following expression:

178×178-22×22
Using the identity a+ba-b=a2-b2, we get:

178×178-22×22=1782-222=178+22178-22=200×156=31200
Thus, the answer is 31200.

(iii) Let us consider the following expression:

198×198-102×10296=1982-102296
Using the identity a+ba-b=a2-b2, we get:

198×198-102×10296=1982-102296=198+102198-10296
198×198-102×10296=198+102198-10296198×198-102×10296=300×9696198×198-102×10296=300

Thus, the answer is 300.

(iv) Let us consider the following expression:

1.73×1.73-0.27×0.27
Using the identity a+ba-b=a2-b2, we get:

1.73×1.73-0.27×0.27=1.732-0.272=1.73+0.271.73-0.27=2×1.46=2.92
Thus, the answer is 2.92.

(v) Let us consider the following expression:

8.63×8.63-1.37×1.370.726=8.632-1.3720.726
Using the identity a+ba-b=a2-b2, we get:

8.63×8.63-1.37×1.370.726=8.632-1.3720.726=8.63+1.378.63-1.370.726
8.63×8.63-1.37×1.370.726=8.63+1.378.63-1.370.7268.63×8.63-1.37×1.370.726=8.63+1.378.63-1.370.7268.63×8.63-1.37×1.370.726=10×7.260.7268.63×8.63-1.37×1.370.726=10×7.26100.7268.63×8.63-1.37×1.370.726=100

Thus, the answer is 100.

Question 6:

Find the value of x, if:
(i) 4x = (52)2 − (48)2
(ii) 14x = (47)2 − (33)2
(iii) 5x = (50)2 − (40)2

Answer 6:

(i) Let us consider the following equation:

4x=522-482
Using the identity a+ba-b=a2-b2, we get:
4x=522-4824x=52+4852-484x=100×4=400
4x=400
x=100        (Dividing both sides by 4)

(ii) Let us consider the following equation:

14x=472-332
Using the identity a+ba-b=a2-b2, we get:
14x=472-33214x=47+3347-3314x=80×14=1120
14x=1120
x=80        (Dividing both sides by 14)

(iii) Let us consider the following equation:

5x=502-402
Using the identity a+ba-b=a2-b2, we get:
5x=502-4025x=50+4050-405x=90×10=900
5x=900
x=180        (Dividing both sides by 5)

Question 7:

If x+1x=20, find the value of x2+1x2.

Answer 7:

Let us consider the following equation:

x+1x=20
Squaring both sides, we get:

x+1x2=202=400x+1x2=400x2+2×x×1x+1x2=400                   [(a+b)2=a2 +b2 +2ab]x2+2+1x2=400
x2+1x2=398                               (Subtracting 2 from both sides)

Thus, the answer is 398.

Question 8:

If x-1x=3, find the values of x2+1x2 and x4+1x4.

Answer 8:

Let us consider the following equation:

x-1x=3

Squaring both sides, we get:

x-1x2=32=9x-1x2=9x2-2×x×1x+1x2=9x2-2+1x2=9
x2+1x2=11                               (Adding 2 to both sides)

Squaring both sides again, we get:

x2+1x22=112=121x2+1x22=121x22+2x21x2+1x22=121x4+2+1x4=121
x4+1x4=119

Question 9:

If x2+1x2=18, find the values of x+1x and x-1x.

Answer 9:

Let us consider the following expression:

x+1x
Squaring the above expression, we get:

x+1x2=x2+2×x×1x+1x2=x2-2+1x2                       [(a+b)2=a2+b2+2ab]x+1x2=x2+2+1x2
x+1x2=20                                                                     ( x2+1x2=18)
x+1x=±20                                                            (Taking square root of both sides)

Now, let us consider the following expression:

x-1x
Squaring the above expression, we get:

x-1x2=x2-2×x×1x+1x2=x2-2+1x2                     [(a-b)2=a2+b2-2ab]x-1x2=x2-2+1x2
x-1x2=16                                 ( x2+1x2=18)
x-1x=±4                                     (Taking square root of both sides)

Question 10:

If x + y = 4 and xy = 2, find the value of x2 + y2

Answer 10:

We have:

x+y2=x2+2xy+y2x2+y2=x+y2-2xy
x2+y2=42-2×2                ( x+y=4 and xy=2)
x2+y2=16-4x2+y2=12

Question 11:

If xy = 7 and xy = 9, find the value of x2 + y2

Answer 11:

We have:

x-y2=x2-2xy+y2x2+y2=x-y2+2xy
x2+y2=72+2×9                     ( x-y=7 and xy=9 )
x2+y2=72+2×9x2+y2=49+18x2+y2=67

Page-6.44

Question 12:

If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2

Answer 12:

We have:

3x+5y2=3x2+23x5y+5y23x+5y2=9x2+30xy+25y29x2+25y2=3x+5y2-30xy
9x2+25y2=112-30×2                          ( 3x+5y=11 and xy=2)
9x2+25y2=121-609x2+25y2=61

Question 13:

Find the values of the following expressions:
(i) 16x2 + 24x + 9, when x=74
(ii) 64x2 + 81y2 + 144xy, when x = 11 and y=43
(iii) 81x2 + 16y2 − 72xy, when x=23 and y=34

Answer 13:

(i) Let us consider the following expression:

16x2+24x+9

Now

16x2+24x+9=4x+32                                 (Using identity a+b2=a2+2ab+b2)
16x2+24x+9=4×74+32            (Substituting x=74)16x2+24x+9=7+3216x2+24x+9=10216x2+24x+9=100


(ii) Let us consider the following expression:

64x2+81y2+144xy

Now

64x2+81y2+144xy=8x+9y2                                (Using identity a+b2=a2+2ab+b2)
64x2+81y2+144xy=811+9432                  (Substituting x=11 and y=43)64x2+81y2+144xy=88+122 64x2+81y2+144xy=1002 64x2+81y2+144xy=10000

(iii) Let us consider the following expression:

81x2+16y2-72xy

Now

81x2+16y2-72xy=9x-4y2                                  (Using identity a+b2=a2-2ab+b2)
81x2+16y2-72xy=923-4342        (Substituting x=23and y=34)81x2+16y2-72xy=6-32  81x2+16y2-72xy=32 81x2+16y2-72xy=9

Question 14:

If x+1x=9, find the value of x4+1x4.

Answer 14:

Let us consider the following equation:

x+1x=9

Squaring both sides, we get:

x+1x2=92=81x+1x2=81x2+2×x×1x+1x2=81x2+2+1x2=81
x2+1x2=79                               (Subtracting 2 from both sides)

Now, squaring both sides again, we get:

x2+1x22=792=6241x2+1x22=6241x22+2x21x2+1x22=6241x4+2+1x4=6241
x4+1x4=6239

Question 15:

If x+1x=12, find the value of x-1x.

Answer 15:

Let us consider the following equation:

x+1x=12

Squaring both sides, we get:

x+1x2=122=144x+1x2=144x2+2×x×1x+1x2=144                      [ (a+b)2=a2+b2+2ab]x2+2+1x2=144
x2+1x2=142                               (Subtracting 2 from both sides)

Now

x-1x2=x2-2×x×1x+1x2=x2-2+1x2                         [(a-b)2=a2+b2-2ab]x-1x2=x2-2+1x2x-1x2=142-2                                                  ( x2+1x2=142)x-1x2=140     x-1x=±140                                                    Taking square root

Question 16:

If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]

Answer 16:

We will use the identity a+ba-b=a2-b2 to obtain the value of xy.
Squaring (2x+3y) and (2x-3y) both and then subtracting them, we get:
2x+3y2-2x-3y2=2x+3y+2x-3y2x+3y-2x-3y=4x×6y=24xy2x+3y2-2x-3y2=24xy
24xy=2x+3y2-2x-3y224xy=142-2224xy=14+214-2                        ( a+ba-b=a2-b2)24xy=16×12xy=16×1224                                       (Dividing both sides by 24)xy=8

Question 17:

If x2 + y2 = 29 and xy = 2, find the value of
(i) x + y
(ii) x − y
(iii) x4 + y4

Answer 17:

(i) We have:

x+y2=x2+2xy+y2x+y=±x2+2xy+y2x+y=±29+2×2                (  x2+y2=29 and xy=2)x+y=±29+4x+y=±33

(ii) We have:

x-y2=x2-2xy+y2x-y=±x2-2xy+y2x+y=±29-2×2                 ( x2+y2=29 and xy=2)x+y=±29-4x+y=±25x+y=±5

(iii) We have:

x2+y22=x4+2x2y2+y4x4+y4=x2+y22-2x2y2x4+y4=x2+y22-2xy2x4+y4=292-222                             ( x2+y2=29 and xy=2)x4+y4=841-8x4+y4=833

Question 18:

What must be added to each of the following expressions to make it a whole square?
(i) 4x2 − 12x + 7
(ii) 4x2 − 20x + 20

Answer 18:

(i) Let us consider the following expression:

4x2-12x+7
The above expression can be written as:

4x2-12x+7=2x2-2×2x×3+7
It is evident that if 2x is considered as the first term and 3 is considered as the second term, 2 is required to be added to the above expression to make it a perfect square. Therefore, 7 must become 9.

Therefore, adding and subtracting 2 in the above expression, we get:

4x2-12x+7+2-2=2x2-2×2x×3+7+2-2=2x2-2×2x×3+9-2=2x+32-2
Thus, the answer is 2.

(ii) Let's consider the following expression:

4x2-20x+20
The above expression can be written as:

4x2-20x+20=2x2-2×2x×5+20
It is evident that if 2x is considered as the first term and 5 is considered as the second term, 5 is required to be added to the above expression to make it a perfect square. Therefore, number 20 must become 25.

Therefore, adding and subtracting 5 in the above expression, we get:

4x2-20x+20+5-5=2x2-2×2x×5+20+5-5=2x2-2×2x×5+25-5=2x+52-5
Thus, the answer is 5.

Question 19:

Simplify:
(i) (x − y)(x + y) (x2 + y2)(x4 + y2)
(ii) (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
(iii) (4m − 8n)2 + (7m + 8n)2
(iv) (2.5p − 1.5q)2 − (1.5p − 2.5q)2
(v) (m2n2m)2 + 2m3n2

Answer 19:

To simplify, we will proceed as follows:
(i) 
(i) x-yx+yx2+y2x4+y4=x2-y2x2+y2x4+y4            ∵ a+ba-b=a2-b2=x4-y4x4+y4                         ∵ a+ba-b=a2-b2=x8-x8                                       a+ba-b=a2-b2

(ii) 2x-12x+14x2+116x4+1=2x2-124x2+116x4+1             a+ba-b=a2-b2      =4x2-14x2+116x4+1           =4x22-12216x4+1                    a+ba-b=a2-b2=16x4-1  16x4+1        =16x42 - 12                                       a+ba-b=a2-b2=256x8-1

(iii) 7m-8n2+7m+8n2=27m2+28n2                      ∵ a-b2+a+b2=2a2+2b2=98m2+128n2


(iv) 2.5p-1.5q2-1.5p-2.5q2=2.5p2+1.5q2-22.5p1.5q-1.5p2+2.5q2-21.5p2.5q =2.5p2+1.5q2-22.5p1.5q-1.5p2-2.5q2+21.5p2.5q=2.5p2-1.5p2+1.5q2-2.5q2 =2.5p+1.5p2.5p-1.5p+1.5q+2.51.5q-2.5q                   a+ba-b=a2-b2                    =4p×p+4q×-q=4p2-4q2 =4p2-4q2                                                    

v) m2-n2m2+2m3n2=m22+n2m2                                           a-b2+2ab=a2+b2=m4+n4m2 

Question 20:

Show that:
(i) (3x + 7)2 − 84x = (3x − 7)2
(ii) (9a − 5b)2 + 180ab = (9a + 5b)2
(iii) 4m3-3n42+2mn=16m29+9n216
(iv) (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
(v) (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0

Answer 20:


(i) LHS=3x+72-84x=3x+72-4×3x×7=3x-72          a+b2-4ab=a-b2=RHSBecause LHS is equal to RHS, the given equation is verified.


(ii) LHS=9a-5b2+180ab=9a-5b2+4×9a×5b=9a+5b2                                   a-b2+4ab=a+b2=RHSBecause LHS is equal to RHS, the given equation is verified.


(iii) LHS=4m3-3n42+2mn=4m3-3n42+2×4m3×3n4=4m32+3n42                                 a-b2+2ab=a2+b2=16m29+9n216=RHSBecause LHS is equal to RHS, the given equation is verified.


(iv) LHS=4pq+3q2-4pq-3q2=44pq3q                         a+b2-a+b2=4ab=48pq2 =RHSBecause LHS is equal to RHS, the given equation is verified.


(v) LHS=a-ba+b+b-cb+c+c+ac-a=a2-b2+b2-c2+c2-a2                                                   a+ba-b=a2-b2=a2-b2+b2-c2+c2-a2  =0=RHSBecause LHS is equal to RHS, the given equation is verified.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *