Processing math: 100%

RD Sharma solution class 8 chapter 6 Algebraic Expressions and Identity Exercise 6.5

Exercise 6.5

Page-6.30



Question 1:

Multiply:
(5x + 3) by (7x + 2)

Answer 1:

To multiply, we will use distributive law as follows:

(5x+3)(7x+2)=5x(7x+2)+3(7x+2)=(5x×7x+5x×2)+(3×7x+3×2)=(35x2+10x)+(21x+6)=35x2+10x+21x+6=35x2+31x+6

Thus, the answer is 35x2+31x+6.


Question 2:

Multiply:
(2x + 8) by (x − 3)

Answer 2:

To multiply the expressions, we will use the distributive law in the following way:

(2x+8)(x-3)=2x(x-3)+8(x-3)=(2x×x-2x×3)+(8x-8×3)=(2x2-6x)+(8x-24)=2x2-6x+8x-24=2x2+2x-24

Thus, the answer is 2x2+2x-24.


Question 3:

Multiply:
(7x + y) by (x + 5y)

Answer 3:

To multiply, we will use distributive law as follows:

(7x+y)(x+5y)=7x(x+5y)+y(x+5y)=7x2+35xy+xy+5y2=7x2+36xy+5y2

Thus, the answer is 7x2+36xy+5y2.


Question 4:

Multiply:
(a − 1) by (0.1a2 + 3)

Answer 4:

To multiply, we will use distributive law as follows:

(a-1)(0.1a2+3)=0.1a2(a-1)+3(a-1)=0.1a3-0.1a2+3a-3

Thus, the answer is 0.1a3-0.1a2+3a-3.


Question 5:

Multiply:
(3x2 + y2) by (2x2 + 3y2)

Answer 5:

To multiply, we will use distributive law as follows:

(3x2+y2)(2x2+3y2)=3x2(2x2+3y2)+y2(2x2+3y2)=6x4+9x2y2+2x2y2+3y4=6x4+11x2y2+3y4

Thus, the answer is 6x4+11x2y2+3y4.


Question 6:

Multiply:
(35x+12y) by (56x+4y)

Answer 6:

To multiply, we will use distributive law as follows:

(35x+12y)(56x+4y)=35x(56x+4y)+12y(56x+4y)=12x2+125xy+512xy+2y2=12x2+(144+2560)xy+2y2=12x2+16960xy+2y2

Thus, the answer is 12x2+16960xy+2y2.
Page-6.31


Question 7:

Multiply:
(x6y6) by (x2 + y2)

Answer 7:

To multiply, we will use distributive law as follows:

(x6-y6)(x2+y2)=x6(x2+y2)-y6(x2+y2)=(x8+x6y2)-(y6x2+y8)=x8+x6y2-y6x2-y8

Thus, the answer is x8+x6y2-y6x2-y8.


Question 8:

Multiply:
(x2 + y2) by (3a + 2b)

Answer 8:

To multiply, we will use distributive law as follows:

(x2+y2)(3a+2b)=x2(3a+2b)+y2(3a+2b)=3ax2+2bx2+3ay2+2by2

Thus, the answer is 3ax2+2bx2+3ay2+2by2.


Question 9:

Multiply:
[−3d + (−7f)] by (5d + f)

Answer 9:

To multiply, we will use distributive law as follows:

[-3d+(-7f)](5d+f)=(-3d)(5d+f)+(-7f)(5d+f)=(-15d2-3df)+(-35df-7f2)=-15d2-3df-35df-7f2=-15d2-38df-7f2

Thus, the answer is -15d2-38df-7f2.


Question 10:

Multiply:
(0.8a − 0.5b) by (1.5a − 3b)

Answer 10:

To multiply, we will use distributive law as follows:

(0.8a-0.5b)(1.5a-3b)=0.8a(1.5a-3b)-0.5b(1.5a-3b)=1.2a2-2.4ab-0.75ab+1.5b2=1.2a2-3.15ab+1.5b2

Thus, the answer is 1.2a2-3.15ab+1.5b2.


Question 11:

Multiply:
(2x2y2 − 5xy2) by (x2y2)

Answer 11:

To multiply, we will use distributive law as follows:

(2x2y2-5xy2)(x2-y2)=2x2y2(x2-y2)-5xy2(x2-y2)=2x4y2-2x2y4-5x3y2+5xy4

Thus, the answer is 2x4y2-2x2y4-5x3y2+5xy4.


Question 12:

Multiply:
(x7+x22)by(25+9x4)

Answer 12:

To multiply the expressions, we will use the distributive law in the following way:

(x7+x22)(25+9x4)=x7(25+9x4)+x22(25+9x4)=2x35+9x228+x25+9x38=2x35+(45+28140)x2+ 9x38=2x35+73x2140 +9x28
Thus, the answer is  2x35+73x2140+9x38


Question 13:

Multiply:
(-a7+a29)by(b2-b23)

Answer 13:

To multiply, we will use distributive law as follows:

(-a7+a29)(b2-b23)=(-a7)(b2-b23)+(a29)(b2-b23)=(-ab14+ab221)+(a2b18-a2b227)=-ab14+ab221+a2b18-a2b227

Thus, the answer is -ab14+ab221+a2b18-a2b227.


Question 14:

Multiply:
(3x2y − 5xy2) by (15x2 + 13y2)

Answer 14:

To multiply, we will use distributive law as follows:

(3x2y-5xy2)(15x2+13y2)=15x2(3x2y-5xy2)+13y2(3x2y-5xy2)=35x4y-x3y2+x2y3-53xy4

Thus, the answer is 35x4y-x3y2+x2y3-53xy4.


Question 15:

Multiply:
(2x2 − 1) by (4x3 + 5x2)

Answer 15:

To multiply, we will use distributive law as follows:

(2x2-1)(4x3+5x2)=2x2(4x3+5x2)-1(4x3+5x2)=8x5+10x4-4x3-5x2

Thus, the answer is 8x5+10x4-4x3-5x2.


Question 16:

(2xy + 3y2) (3y2 − 2)

Answer 16:

To multiply, we will use distributive law as follows:

(2xy+3y2)(3y2-2)=2xy(3y2-2)+3y2(3y2-2)=6xy3-4xy+9y4-6y2=9y4+6xy3-6y2-4xy

Thus, the answer is 9y4+6xy3-6y2-4xy.


Question 17:

Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)

Answer 17:

To multiply, we will use distributive law as follows:

(3x-5y)(x+y)=3x(x+y)-5y(x+y)=3x2+3xy-5xy-5y2=3x2-2xy-5y2

(3x-5y)(x+y)=3x2-2xy-5y2.
Now, we put x = -1 and y = -2 on both sides to verify the result.

LHS=(3x-5y)(x+y)={3(-1)-5(-2)}{-1+(-2)}=(-3+10)(-3)=(7)(-3)=-21

RHS=3x2-2xy-5y2=3(-1)2-2(-1)(-2)-5(-2)2=3×1-4-5×4=3-4-20=-21

Because LHS is equal to RHS, the result is verified.

Thus, the answer is 3x2-2xy-5y2.


Question 18:

Find the following product and verify the result for x = − 1, y = − 2:
(x2y  1) (3  2x2y)

Answer 18:

To multiply, we will  use distributive law as follows:

(x2y-1)(3-2x2y)=x2y(3-2x2y)-1×(3-2x2y)=3x2y-2x4y2-3+2x2y=5x2y-2x4y2-3

(x2y-1)(3-2x2y)=5x2y-2x4y2-3

Now, we put x = -1 and y = -2 on both sides to verify the result.

LHS = (x2y-1)(3-2x2y)=[(-1)2(-2)-1][3-2(-1)2(-2)]=[1×(-2)-1][3-2×1×(-2)]=(-2-1)(3+4)=-3×7=-21

RHS=5x2y-2x4y2-3=5(-1)2(-2)-2(-1)4(-2)2-3=[5×1×(-2)]-[2×1×4]-3=-10-8-3=-21

Because LHS is equal to RHS, the result is verified.

Thus, the answer is 5x2y-2x4y2-3.


Question 19:

Find the following product and verify the result for x = − 1, y = − 2:
(13x-y25)(13x+y25)

Answer 19:

To multiply, we will use distributive law as follows:

(13x-y25)(13x+y25)=[13x(13x+y25)]-[y25(13x+y25)]=[19x2+xy215]-[xy215+y425]=19x2+xy215-xy215-y425=19x2-y425

 (13x-y25)(13x+y25)=19x2-y425

Now, we will put x = -1 and y = -2 on both the sides to verify the result.

LHS = (13x-y25)(13x+y25)=[13(-1)-(-2)25][13(-1)+(-2)25]=(-13-45)(-13+45)=(-1715)(715)=-119225

RHS=19x2-y425=19(-1)2-(-2)425=19×1-1625=19-1625=-119225

Because LHS is equal to RHS, the result is verified.

Thus, the answer is 19x2-y425.


Question 20:

Simplify:
x2(x + 2y) (x − 3y)

Answer 20:

To simplify, we will proceed as follows:

x2(x+2y)(x-3y)=[x2(x+2y)](x-3y)=(x3+2x2y)(x-3y)=x3(x-3y)+2x2y(x-3y)=x4-3x3y+2x3y-6x2y2=x4-x3y-6x2y2

Thus, the answer is x4-x3y-6x2y2.


Question 21:

Simplify:
(x2 − 2y2) (x + 4y) x2y2

Answer 21:

To simplify, we will proceed as follows:

(x2-2y2)(x+4y)x2y2=[x2(x+4y)-2y2(x+4y)]x2y2=(x3+4x2y-2xy2-8y3)x2y2=x5y2+4x4y3-2x3y4-8x2y5

Thus, the answer is x5y2+4x4y3-2x3y4-8x2y5.


Question 22:

Simplify:
a2b2(a + 2b)(3a + b)

Answer 22:

To simplify, we will proceed as follows:

a2b2(a+2b)(3a+b)=[a2b2(a+2b)](3a+b)=(a3b2+2a2b3)(3a+b)=3a(a3b2+2a2b3)+b(a3b2+2a2b3)=3a4b2+6a3b3+a3b3+2a2b4=3a4b2+7a3b3+2a2b4

Thus, the answer is 3a4b2+7a3b3+2a2b4.


Question 23:

Simplify:
x2(x − y) y2(x + 2y)

Answer 23:

To simplify, we will proceed as follows:

x2(x-y)y2(x+2y)=[x2(x-y)][y2(x+2y)]=(x3-x2y)(xy2+2y3)=x3(xy2+2y3)-x2y(xy2+2y3)=x4y2+2x3y3-[x3y3+2x2y4]=x4y2+2x3y3-x3y3-2x2y4=x4y2+x3y3-2x2y4

Thus, the answer is x4y2+x3y3-2x2y4.


Question 24:

Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)

Answer 24:

To simplify, we will proceed as follows:

(x3-2x2+5x-7)(2x-3)=2x(x3-2x2+5x-7)-3(x3-2x2+5x-7)=2x4-4x3+10x2-14x-3x3+6x2-15x+21
=2x4-4x3-3x3+10x2+6x2-14x-15x+21     (Rearranging)
=2x4-7x3+16x2-29x+21                              (Combining like terms)

Thus, the answer is 2x4-7x3+16x2-29x+21.


Question 25:

Simplify:
(5x + 3)(x − 1)(3x − 2)

Answer 25:

To simplify, we will proceed as follows:

(5x+3)(x-1)(3x-2)=[(5x+3)(x-1)](3x-2)
=[5x(x-1)+3(x-1)](3x-2)              (Distributive law)
=[5x2-5x+3x-3](3x-2)=[5x2-2x-3](3x-2)=3x(5x2-2x-3)-2(5x2-2x-3)=15x3-6x2-9x-[10x2-4x-6]=15x3-6x2-9x-10x2+4x+6
=15x3-6x2-10x2-9x+4x+6              (Rearranging)
=15x3-16x2-5x+6                              (Combining like terms)

Thus, the answer is 15x3-16x2-5x+6.


Question 26:

Simplify:
(5 − x)(6 − 5x)( 2 − x)

Answer 26:

To simplify, we will proceed as follows:

(5-x)(6-5x)(2-x)=[(5-x)(6-5x)](2-x)
=[5(6-5x)-x(6-5x)](2-x)                (Distributive law)
=(30-25x-6x+5x2)(2-x)=(30-31x+5x2)(2-x)=2(30-31x+5x2)-x(30-31x+5x2)=60-62x+10x2-30x+31x2-5x3
=60-62x-30x+10x2+31x2-5x3              (Rearranging)
=60-92x+41x2-5x3                                (Combining like terms)

Thus, the answer is 60-92x+41x2-5x3.


Question 27:

Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)

Answer 27:

To simplify, we will proceed as follows:

(2x2+3x-5)(3x2-5x+4)
=2x2(3x2-5x+4)+3x(3x2-5x+4)-5(3x2-5x+4)           (Distributive law)
=6x4-10x3+8x2+9x3-15x2+12x-15x2+25x-20
=6x4-10x3+9x3+8x2-15x2-15x2+12x+25x-20              (Rearranging)
=6x4-x3-22x2+36x-20                                                     (Combining like terms)

Thus, the answer is 6x4-x3-22x2+36x-20.


Question 28:

Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)

Answer 28:

To simplify, we will proceed as follows:

(3x-2)(2x-3)+(5x-3)(x+1)=[(3x-2)(2x-3)]+[(5x-3)(x+1)]
=[3x(2x-3)-2(2x-3)]+[5x(x+1)-3(x+1)]           (Distributive law)
=6x2-9x-4x+6+5x2+5x-3x-3
=6x2+5x2-9x-4x+5x-3x-3+6                                  (Rearranging)
=11x2-11x+3                                                                 (Combining like terms)

Thus, the answer is 11x2-11x+3.


Question 29:

Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)

Answer 29:

To simplify, we will proceed as follows:

(5x-3)(x+2)-(2x+5)(4x-3)=[(5x-3)(x+2)]-[(2x+5)(4x-3)]
=[5x(x+2)-3(x+2)]-[2x(4x-3)+5(4x-3)]            (Distributive law)
=5x2+10x-3x-6-8x2+6x-20x+15
=5x2-8x2+10x-3x+6x-20x-6+15                              (Rearranging)
=5x2-8x2+10x-3x+6x-20x-6+15=-3x2-7x+9                              (Combining like terms)

Hence, the answer is -3x2-7x+9.


Question 30:

Simplify:
(3x + 2y)(4x + 3y) − (2xy)(7x − 3y)

Answer 30:

To simplify, we will proceed as follows:

(3x+2y)(4x+3y)-(2x-y)(7x-3y)=[(3x+2y)(4x+3y)]-[(2x-y)(7x-3y)]
=[3x(4x+3y)+2y(4x+3y)]-[2x(7x-3y)-y(7x-3y)]            (Distributive law)
=12x2+9xy+8xy+6y2-[14x2-6xy-7xy+3y2]=12x2+9xy+8xy+6y2-14x2+6xy+7xy-3y2
=12x2-14x2+9xy+8xy+6xy+7xy+6y2-3y2                              (Rearranging)
=-2x2+30xy+3y2                                                                       (Combining like terms)

Thus, the answer is -2x2+30xy+3y2.


Question 31:

Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)

Answer 31:

To simplify, we will  proceed as follows:

(x2-3x+2)(5x-2)-(3x2+4x-5)(2x-1)=[(x2-3x+2)(5x-2)]-[(3x2+4x-5)(2x-1)]
=[5x(x2-3x+2)-2(x2-3x+2)]-[2x(3x2+4x-5)-1×(3x2+4x-5)]            (Distributive law)
=[5x3-15x2+10x-(2x2-6x+4)]-[6x3+8x2-10x-3x2-4x+5]=[5x3-15x2+10x-2x2+6x-4]-[6x3+8x2-10x-3x2-4x+5]=5x3-15x2+10x-2x2+6x-4-6x3-8x2+10x+3x2+4x-5
=5x3-6x3-15x2-2x2-8x2+3x2+10x+6x+10x+4x-5-4                                (Rearranging)
=-x3-22x2+30x-9                                                                                            (Combining like terms)

Thus, the answer is -x3-22x2+30x-9.
 


Question 32:

Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2x + 1)

Answer 32:

To simplify,we will proceed as follows:

(x3-2x2+3x-4)(x-1)-(2x-3)(x2-x+1)=[(x3-2x2+3x-4)(x-1)]-[(2x-3)(x2-x+1)]
=[x(x3-2x2+3x-4)-1(x3-2x2+3x-4)]-[2x(x2-x+1)-3(x2-x+1)]            (Distributive law)
=[x(x3-2x2+3x-4)-1(x3-2x2+3x-4)]-[2x(x2-x+1)-3(x2-x+1)]=x4-2x3+3x2-4x-x3+2x2-3x+4-[2x3-2x2+2x-3x2+3x-3]=x4-2x3+3x2-4x-x3+2x2-3x+4-2x3+2x2-2x+3x2-3x+3
=x4-2x3-2x3-x3+3x2+2x2+2x2+3x2-4x-3x-2x-3x+4+3                             (Rearranging)
=x4-5x3+10x2-12x+7                                                                                            (Combining like terms)

Thus, the answer is x4-5x3+10x2-12x+7.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *