RD Sharma solution class 8 chapter 21 Mensuration II(Volume and Surface Area of Cuboid and a Cube) Exercise 21.4

Exercise 21.4

Page-21.30


Question 1:

Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.

Answer 1:

Length of the room=12 mBreadth=9 m Height=8 mSince the room is cuboidal in shape, the length of the longest rod that can be placed in the room will be equal to the length of the diagonal between opposite vertices.Length of the diagonal of the floor using the Pythagorus theorem=l2+b2=(12)2+(9)2=144+81=225=15 mi.e., the length of the longest rod would be equal to the length of the diagonal of the right angle triangle of base 15 m and altitude 8 m.Similarly, using the Pythagorus theorem, length of the diagonal=152+82=225+64=17 m The length of the longest rod that can be placed in the room is 17 m.


Question 2:

If V is the volume of a cuboid of dimensions a, b, c and S is its surface area, then prove that
1V=2S1a+1b+1c

Answer 2:

It is given that V is the volume of a cuboid of length=a, breadth=b and height=c. Also, S is surface area of cuboid.Then, V=a×b×cSurface area of the cuboid=2×(length×breadth+breadth×height+length×height)S=2×(a×b+b×c+a×c)Let us take the right-hand side of the equation to be proven. 2S(1a+1b+1c)=22×(a×b+b×c+a×c)×(1a+1b+1c)=1(a×b+b×c+a×c)×(1a+1b+1c)Now, multiplying the numerator and the denominator with a×b×c, we get:1(a×b+b×c+a×c)×(1a+1b+1c)×a×b×ca×b×c=1(a×b+b×c+a×c)×(a×b×ca+a×b×cb+a×b×cc)×1a×b×c=1(a×b+b×c+a×c)×(b×c+a×c+a×b)×1a×b×c=1(a×b+b×c+a×c)×(a×b+b×c+a×c)×1a×b×c=1a×b×c=1V 2S(1a+1b+1c)=1V


Question 3:

The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.

Answer 3:

The areas of three adjacent faces of a cuboid are x, y and z.Volume of the cuboid=VObserve that x=length×breadth y=breadth×height, z=length×heightSince volume of cuboid V=length×breadth×height, we have:V2=V×V=(length×breadth×height)×(length×breadth×height)=(length×breadth)×(breadth×height)×(length×height)=x×y×z=xyz V2=xyz


Question 4:

A rectangular water reservoir contains 105 m3 of water. Find the depth of the water in the reservoir if its base measures 12 m by 3.5 m.

Answer 4:

Length of the rectangular water reservoir=12 m Breadth=3.5 m Suppose that the height of the reservoir=h mAlso, it contains 105 m3 of water, i.e., its volume=105 m3Volume of the cuboidal water reservoir=length×breadth×height105=12×3.5×h105=42×hh=10542=2.5 m The depth of the water in the reservoir is 2.5 m.


Question 5:

Cubes A, B, C having edges 18 cm, 24 cm and 30 cm respectively are melted and moulded into a new cube D. Find the edge of the bigger cube D.

Answer 5:

We have the following:Length of the edge of cube A=18 cmLength of the edge of cube B=24 cm Length of the edge of cube C=30 cmThe given cubes are melted and moulded into a new cube D. Hence, volume of cube D=volume of cube A+volume of cube B+volume of cube C=(side of cube A)3+(side of cube B)3+(side of cube C)3=183+243+303=5832+13824+27000=46656 cm3Suppose that the edge of the new cube D=xx3=46656x=466563=36 cm The edge of the bigger cube D is 36 cm.


Question 6:

The breadth of a room is twice its height, one half of its length and the volume of the room is 512 cu. dm. Find its dimensions.

Answer 6:

Suppose that the breadth of the room=x dmSince breadth is twice the height, breadth=2×heightSo, height of the room=breadth2=x2Also, it is given that the breadth is half the length.So, breadth=12×lengthi.e., length=2×breadth=2×xSince volume of the room=512 cu dm, we have:Volume of a cuboid=length×breadth×height512=2×x×x×x2512=x3x=5123=8 dmHence, length of the room=2×x=2×8=16 dm Breadth of the room=x=8 dmHeight of the the room=x2=82=4 dm


Question 7:

A closed iron tank 12 m long, 9 m wide and 4 m deep is to be made. Determine the cost of iron sheet used at the rate of Rs 5 per metre sheet, sheet being 2 m wide.

Answer 7:

A closed iron tank of dimensions 12 m long, 9 m wide and 4 m deep is to be made. Surface area of the cuboidal tank=2×(length×breadth+breadth×height+length×height)=2×(12×9+9×4+12×4)=2×(108+36+48)=384 m2Also, the cost of an iron sheet is Rs 5 per metre and the sheet is 2 metres wide. i.e., area of a sheet=1 m×2 m=2 m2So, the cost of 2 m2 of iron sheet=Rs 5i.e., the cost of 1 m2 of iron sheet=Rs 52 Cost of 384 m2 of iron sheet=384×52=Rs 960


Question 8:

A tank open at the top is made of iron sheet 4 m wide. If the dimensions of the tank are 12 m × 8 m × 6 m, find the cost of iron sheet at Rs 17.50 per metre.

Answer 8:

An open iron tank of dimensions 12 m×8 m×6 m is to be made.Surface area of the open tank=(area of the base)+(total area of the 4 walls)=(12×8)+2×(8×6+12×6)=(96)+2×(48+72)=336 m2Also, it is given that the cost of the iron sheet that is 4 m wide is Rs 17.50 per metre. i.e., the area of the iron sheet=1 m×4 m=4 m2 So, the cost of 4 m2 of iron sheet=Rs 17.50  The cost of iron sheet required to an iron tank of surface area 336 m2 =336×17.504=Rs 1470


Question 9:

Three equal cubes are placed adjacently in a row. Find the ratio of total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.

Answer 9:

Suppose that the side of the cube= x cmSurface area of the cube=6×(side)2=6×x2=6x2 cm2i.e., the sum of the surface areas of three such cubes=6x2+6x2+6x2=18 x2 cm2Now, these three cubes area placed together to form a cuboid. Then the length of the new cuboid will be 3 times the edge of the cube=3×x=3x cmBreadth of the cuboid=x cmHeight of the cuboid=x cm Total surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(3x×x+x×x+3x×x)=2×(3x2+x2+3x2)=2×(7x2)=14x2 cm2

i.e., 
the ratio of the total surface area cuboid to the sum of the surface areas of the three cubes = 14 x2 cm2 : 18 x2 cm2 = 7:9 
Hence, the ratio is 7:9.


Question 10:

The dimensions of a room are 12.5 m by 9 m by 7 m. There are 2 doors and 4 windows in the room; each door measures 2.5 m by 1.2 m and each window 1.5 m by 1 m. Find the cost of painting the walls at Rs 3.50 per square metre.

Answer 10:

The dimensions of the room are 12.5 m×9 m×7 m.Hence, the surface area of walls=2×(length×height+breadth×height)=2×(12.5×7+9×7)=301 m2Also, there are 2 doors and 4 windows in the room. The dimensions of door are 2.5 m×1.2 m. i.e., area of a door=2.5×1.2=3 m2 Total area of 2 doors=2×3=6 m2 The dimensions of a window are 1.5 m×1 m. i.e., area of a window=1.5×1=1.5 m2 Total area of 4 windows=4×1.5=6 m2Hence, the total area to be painted=301-(6+6)=289 m2The rate of painting 1 m2 of wall=Rs 3.50 The total cost of painting 289 m2 of wall=Rs 289×3.50=Rs 1011.50


Question 11:

A field is 150 m long and 100 m wide. A plot (outside the field) 50 m long and 30 m wide is dug to a depth of 8 m and the earth taken out from the plot is spread evenly in the field. By how much is the level of field raised?

Answer 11:

The dimensions of the plot dug outside the field are 50 m×30 m×8 m.Hence, volume of the earth dug-out from the plot=50×30×8=12000 m3Suppose that the level of the earth rises by h m.When we spread this dug-out earth on the field of length 150 m, breadth 100 m and height h m, we have:Volume of earth dug-out=150×100×h12000=15000×hh=1200015000=0.8 m h=80 cm    ( 1 m=100 cm)∴ The level of the field will rise by  80 cm.


Question 12:

Two cubes, each of volume 512 cm3 are joined end to end. Find the surface area of the resulting cuboid.

Answer 12:

Two cubes each of volume 512 cm3 are joined end to end. Now, volume of a cube=(side)3512=(side)3Side of the cube=5123=8 cm If the cubes area joined side by side, then the length of the resulting cuboid is 2×8 cm=16 cm. Breadth=8 cm Height=8 cm Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(16×8+8×8+16×8)=2×(128+64+128)=640 cm2


Question 13:

Three cubes whose edges measure 3 cm, 4 cm, and 5 cm respectively are melted to form a new cube. Find the surface area of the new cube formed.

Answer 13:

Three cubes of edges 3 cm, 4 cm and 5 cm are melted and molded to form a new cube.i.e., volume of the new cube=sum of the volumes of the three cubes=(3)3+(4)3+(5)3               =27+64+125=216 cm3We know that volume of a cube=(side)3216=(side)3Side of the new cube=2163=6 cm Surface area of the new cube=6×(side)2=6×(6)2=216 cm2


Question 14:

The cost of preparing the walls of a room 12 m long at the rate of Rs 1.35 per square metre is Rs 340.20 and the cost of matting the floor at 85 paise per square metre is Rs 91.80. Find the height of the room.

Answer 14:

The cost of preparing 4 walls of a room whose length is 12 m is Rs 340.20 at a rate of Rs 1.35/m2. Area of the four walls of the room=total costrate=Rs 340.20Rs 1.35=252 m2Also, the cost of matting the floor at 85 paise/m2 is Rs 91.80. Area of the floor=total costrate=Rs 91.80Rs 0.85=108 m2Hence, breadth of the room=area of the floorlength=10812=9 mSuppose that the height of the room is h m.Then, we have:Area of four walls=2×(length×height+breadth×height)252=2×(12×h+9×h)252=2×(21h)21h=2522=126h=12621=6 m The height of the room is 6 m.


Question 15:

The length of a hall is 18 m and the width 12 m. The sum of the areas of the floor and the flat roof is equal to the sum of the areas of the four walls. Find the height of the wall.

Answer 15:

Length of the hall=18 mIts width=12 m Suppose that the height of the wall is h m.  Also, sum of the areas of the floor and the flat roof=sum of the areas of the four walls 2×(length×breadth)=2×(length+breadth)×height2×(18×12)=2×(18+12)×h432=60×hh=43260=7.2 m The height of wall is 7.2 m.


Question 16:

A metal cube of edge 12 cm is melted and formed into three smaller cubes. If the edges of the two smaller cubes are 6 cm and 8 cm, find the edge of the third smaller cube.

Answer 16:

Let the edge of the third cube be x cm.Three small cubes are formed by melting the cube of edge 12 cm. Edges of two small cubes are 6 cm and 8 cm.Now, volume of a cube=(side)3Volume of the big cube=sum of the volumes of the three small cubes(12)3=(6)3+(8)3+(x)3            1728=216+512+x3x3=1728-728=1000x=10003=10 cm The edge of the third cube is 10 cm.


Question 17:

The dimensions of a cinema hall are 100 m, 50 m and 18 m. How many persons can sit in the hall, if each person requires 150 m3 of air?

Answer 17:

The dimensions of a cinema hall are 100 m×50 m×18 m. i.e., volume of air in the cinema hall=100×50×18=90000 m3It is given that each person requires 150 m3 of air. The number of persons that can sit in the cinema hall=volume of air in hallvolume of air required by 1 person=90000150=600


Question 18:

The external dimensions of a closed wooden box are 48 cm, 36 cm, 30 cm. The box is made of 1.5 cm thick wood. How many bricks of size 6 cm × 3 cm × 0.75 cm can be put in this box?

Answer 18:

The outer dimensions of the closed wooden box are 48 cm×36 cm×30 cm.Also, the box is made of a 1.5 cm thick wood, so the inner dimensions of the box will be  (2×1.5=3)cm less.i.e., the inner dimensions of the box are 45 cm×33 cm×27 cm Volume of the box=45×33×27=40095 cm3Also, the dimensions of a brick are 6 cm×3 cm×0.75 cm.Volume of a brick=6×3×0.75=13.5 cm3  The number of bricks that can be put in the box=4009513.5=2970
Page-21.31

Question 19:

The dimensions of a rectangular box are in the ratio of 2 : 3 : 4 and the difference between the cost of covering it with sheet of paper at the rates of Rs 8 and Rs 9.50 per m2 is Rs. 1248. Find the dimensions of the box.

Answer 19:

Suppose that the dimensions be x multiple of each other.The dimensions are in the ratio 2:3:4. Hence, length=2x mBreadth=3x mHeight=4x mSo, total surface area of the rectangular box=2×(length×breadth+breadth×height+length×height)=2×(2x×3x+3x×4x+2x×4x)=2×(6x2+12x2+8x2)=2×(26x2)=52x2 m2Also, the cost of covering the box with paper at the rate Rs 8/m2 and Rs 9.50/m2 is Rs 1248.Here, the total cost of covering the box at a rate of Rs 8/m2=8×52x2=Rs 416x2And the total cost of covering the box at a rate of Rs 9.50/m2=9.50×52x2=Rs 494x2Now, total cost of covering the box at the rate Rs 9.50/m2-total cost of covering the box at the rate Rs 8/m2=1248494x2-416x2=124878x2=1248x2=124878=16x=16=4Hence, length of the rectangular box=2×x=2×4=8 m Breadth=3×x=3×4=12 m Height=4×x=4×4=16 m

No comments:

Post a Comment

Contact Form

Name

Email *

Message *