RD Sharma solution class 8 chapter 21 Mensuration II(Volume and Surface Area of Cuboid and a Cube) Exercise 21.3

Exercise 21.3

Page-21.22

Question 1:

Find the surface area of a cuboid whose
(i) length = 10 cm, breadth = 12 cm, height = 14 cm
(ii) length = 6 dm, breadth = 8 dm, height = 10 dm
(iii) length = 2 m, breadth = 4 m, height = 5 m
(iv) length = 3.2 m, breadth = 30 dm, height = 250 cm.

Answer 1:

(i)Dimension of the cuboid:Length=10 cm Breadth=12 cmHeight=14 cm Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(10×12+12×14+10×14)=2×(120+168+140)=856 cm2(ii)Dimensions of the cuboid:Length=6 dm Breadth=8 dm Height=10 dm Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(6×8+8×10+6×10)=2×(48+80+60)=376 dm2(iii)Dimensions of the cuboid:Length=2 m Breadth=4 m Height=5 m Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(2×4+4×5+2×5)=2×(8+20+10)=76 m2(iv)Dimensions of the cuboid:Length=3.2m             =3.2×10 dm  (1 m=10 dm)             =32 dmBreadth=30 dm Height=250 cm                  =250×110dm   (10cm = 1 dm)                   =25 dmSurface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(32×30+30×25+32×25)=2×(960+750+800)=5020 dm2

Question 2:

Find the surface area of a cube whose edge is
(i) 1.2 m
(ii) 27 cm
(iii) 3 cm
(iv) 6 m
(v) 2.1 m

Answer 2:

(i) Edge of the a cube=1.2 m  Surface area of the cube=6×(side)2=6×(1.2)2=6×1.44=8.64 m2.(ii) Edge of the a cube=27 cm  Surface area of the cube=6×(side)2=6×(27)2=6×729=4374 cm2(iii) Edge of the a cube=3 cm  Surface area of the cube=6×(side)2=6×(3)2=6×9=54 cm2(iv) Edge of the a cube=6 m  Surface area of the cube=6×(side)2=6×(6)2=6×36=216 m2(v) Edge of the a cube=2.1 m  Surface area of the cube=6×(side)2=6×(2.1)2=6×4.41=26.46 m2

Question 3:

A cuboidal box is 5 cm by 5 cm by 4 cm. Find its surface area.

Answer 3:

The dimensions of the cuboidal box are 5 cm×5 cm×4 cm. Surface area of the cuboidal box=2×(length×breadth+breadth×height+length×height)=2×(5×5+5×4+5×4)=2×(25+20+20)=130 cm2

Question 4:

Find the surface area of a cube whose volume is
(i) 343 m3
(ii) 216 dm3

Answer 4:

(i)Volume of the given cube=343 m3 We know that volume of a cube=(side)3(side)3=343  i.e., side =3433=7 m Surface area of the cube=6×(side)2=6×(7)2=294 m2(ii)Volume of the given cube=216 dm3 We know that volume of a cube=(side)3(side)3=216 i.e., side=2163=6 dm Surface area of the cube=6×(side)2=6×(6)2=216 dm2

Question 5:

Find the volume of a cube whose surface area is
(i) 96 cm2
(ii) 150 m2

Answer 5:

(i)Surface area of the given cube=96 cm2Surface area of a cube=6×(side)26×(side)2=96(side)2=966=16 i.e., side of the cube=16=4 cm Volume of the cube=(side)3=(4)3=64 cm3(ii)Surface area of the given cube=150 m2Surface area of a cube=6×(side)26×(side)2=150(side)2=1506=25 i.e., side of the cube=25=5 m Volume of the cube=(side)3=(5)3=125 m3

Question 6:

The dimensions of a cuboid are in the ratio 5 : 3 : 1 and its total surface area is 414 m2. Find the dimensions.

Answer 6:

It is given that the sides of the cuboid are in the ratio 5:3:1. Suppose that its sides are x multiple of each other, then we have:Length=5x m Breadth=3x m Height=x m Also, total surface area of the cuboid=414 m2Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)414=2×(5x×3x+3x×1x+5x×x)414=2×(15x2+3x2+5x2) 414=2×(23x2) 2×(23×x2)=414 (23×x2)=4142=207x2=20723=9x=9=3Therefore, we have the following:Lenght of the cuboid=5×x=5×3=15 m Breadth of the cuboid=3×x=3×3=9 m Height of the cuboid=x=1×3=3 m

Question 7:

Find the area of the cardboard required to make a closed box of length 25 cm, 0.5 m and height 15 cm.

Answer 7:

Length of the box=25 cm Width of the box=0.5 m                   =0.5×100 cm  ( 1 m= 100 cm)                   =50 cm Height of the box=15 cm Surface area of the box=2×(length×breadth+breadth×height+length×height)=2×(25×50+50×15+25×15)=2×(1250+750+375)=4750 cm2

Question 8:

Find the surface area of a wooden box whose shape is of a cube, and if the edge of the box is 12 cm.

Answer 8:

It is given that the side of the cubical wooden box is 12 cm.  Surface area of the cubical box=6×(side)2=6×(12)2=864 cm2

Question 9:

The dimensions of an oil tin are 26 cm × 26 cm × 45 cm. Find the area of the tin sheet required for making 20 such tins. If 1 square metre of the tin sheet costs Rs 10, find the cost of tin sheet used for these 20 tins.

Answer 9:

Dimensions of the oil tin are 26 cm×26 cm×45 cm.So, the area of tin sheet required to make one tin=2×(length×breadth+breadth×height+length×height)=2×(26×26+26×45+26×45)=2×(676+1170+1170)=6032 cm2Now, area of the tin sheet required to make 20  such tins=20×surface area of one tin=20×6032=120640 cm2It can be observed that 120640 cm2=120640×1cm×1cm                                         =120640×1100m×1100m   ( 100 cm=1 m)                                          =12.0640 m2Also, it is given that the cost of 1 m2 of tin sheet=Rs 10  The cost of 12.0640 m2 of tin sheet=12.0640×10=Rs 120.6

Question 10:

A cloassroom is 11 m long, 8 m wide and 5 m high. Find the sum of the areas of its floor and the four walls (including doors, windows, etc.)

Answer 10:

Lenght of the classroom=11 m Width=8 m Height=5 m We have to find the sum of the areas of its floor and the four walls (i.e., like an open box). The sum of areas of the floor and the four walls=(length×width)+2×(width×height+length×height)=(11×8)+2×(8×5+11×5)=88+2×(40+55)=88+190=278 m2

Question 11:

A swimming pool is 20 m long 15 m wide and 3 m deep. Find the cost of repairing the floor and wall at the rate of Rs 25 per square metre.

Answer 11:

Length of the swimming pool=20 mBreadth=15 mHeight=3 mNow, surface area of the floor and all four walls of the pool=(length×breadth)+2×(breadth×height+length×height)=(20×15)+2×(15×3+20×3)=300+2×(45+60)=300+210=510 m2The cost of repairing the floor and the walls is Rs 25/m2.  The total cost of repairing 510 m2 area=510×25=Rs 12750

Question 12:

The perimeter of a floor of a room is 30 m and its height is 3 m. Find the area of four walls of the room.

Answer 12:

Perimeter of the floor of the room=30 m Height of the oom=3 m Perimeter of a rectangle=2×(length+breadth)=30 m So, area of the four walls=2×(length×height+breadth×height)=2×(length+breadth)×height=30×3=90 m2

Question 13:

Show that the product of the areas of the floor and two adjacent walls of a cuboid is the square of its volume.

Answer 13:

Suppose that the length, breadth and height of the cuboidal floor are l cm, b cm and h cm, respectively.Then, area of the floor=l×b cm2Area of the wall=b×h  cm2Area of its adjacent wall=l×h cm2Now, product of the areas of the floor and the two adjacent walls=(l×b)×(b×h)×(l×h)=l2×b2×h2=(l×b×h)2Also, volume of the cuboid=l×b×h cm2 Product of the areas of the floor and the two adjacent walls=(l×b×h)2=(volume)2

Question 14:

The walls and ceiling of a room are to be plastered. The length, breadth and height of the room are 4.5 m, 3 m and 350 cm, respectively. Find the cost of plastering at the rate of Rs 8 per square metre.

Answer 14:

Length of a room=4.5 m Breadth=3 m Height=350 cm               =350100m    ( 1 m= 100 cm )                    =3.5 mSince only the walls and the ceiling of the room are to be plastered, we have:So, total area to be plastered=area of the ceiling+area of the walls=(length×breadth)+2×(length×height+breadth×height)=(4.5×3)+2×(4.5×3.5+3×3.5)=13.5+2×(15.75+10.5)=13.5+2×(26.25)=66 m2Again, cost of plastering an area of 1 m2=Rs 8  Total cost of plastering an area of 66 m2=66×8=Rs 528

Page-21.23

Question 15:

A cuboid has total surface area of 50 m2 and lateral surface area is 30 m2. Find the area of its base.

Answer 15:

Total sufrace area of the cuboid=50 m2 Its lateral surface area=30 m2Now, total surface area of the cuboid=2×(surface area of the base)+(surface area of the 4 walls)50=2×(surface area of the base)+(30)2×(surface area of the base)=50-30=20 Surface area of the base=202=10 m2

Question 16:

A classroom is 7 m long, 6 m broad and 3.5 m high. Doors and windows occupy an area of 17 m2. What is the cost of white-washing the walls at the rate of Rs 1.50 per m2.

Answer 16:

Length of the classroom=7m Breadth of the classroom=6 mHeight of the classroom=3.5 mTotal surface area of the classroom to be whitewashed=areas of the 4 walls=2×(breadth×height+length×height)=2×(6×3.5+7×3.5)=2×(21+24.5)=91 m2Also, the doors and windows occupy 17 m2. So, the remaining area to be whitewashed=91-17=74 m2Given that the cost of whitewashing 1 m2 of wall=Rs 1.50 Total cost of whitewashing 74 m2 of area=74×1.50=Rs 111

Question 17:

The central hall of a school is 80 m long and 8 m high. It has 10 doors each of size 3 m × 1.5 m and 10 windows each of size 1.5 m × 1 m. If the cost of white-washing the walls of the hall at the rate of Rs 1.20 per m2 is Rs 2385.60, fidn the breadth of the hall.

Answer 17:

Suppose that the breadth of the hall is b m.Lenght of the hall=80 mHeight of the hall=8 mTotal surface area of 4 walls including doors and windows=2×(length×height+breadth×height)=2×(80×8+b×8)=2×(640+8b)=1280+16b m2The walls have 10 doors each of dimensions 3 m×1.5 m. i.e., area of a door=3×1.5=4.5 m2  Area of 10 doors=10×4.5=45 m2Also, there are 10 windows each of dimensions 1.5 m×1 m.i.e., area of one window=1.5×1=1.5 m2 Area of 10 windows=10×1.5=15 m2Thus, total area to be whitwashed=(total area of 4 walls)-(areas of 10 doors+areas of 10 windows)=(1280+16b)-(45+15)=1280+16b-60=1220+16b m2It is given that the cost of whitewashing 1 m2 of area=Rs 1.20 Total cost of whitewashing the walls=(1220+16b)×1.20=1220×1.20+16b×1.20=1464+19.2bSince the total cost of whitewashing the walls is Rs 2385.60, we have:1464+19.2b=2385.6019.2b=2385.60-146419.2b=921.60b=921.6019.2=48 m The breadth of the central hall is 48 m.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *