RD Sharma solution class 8 chapter 21 Mensuration II(Volume and Surface Area of Cuboid and a Cube) Exercise 21.1

Exercise 21.1

Page-21.8


Question 1:

Find the volume of a cuboid whose
(i) length = 12 cm, breadth = 8 cm, height = 6 cm
(ii) length =1.2 m, breadth = 30 cm, height = 15 cm
(iii) length = 15 cm, breadth = 2.5 dm, height = 8 cm.

Answer 1:

(i)In the given cuboid, we have:length=12 cm,  breadth=8 cm and height=6 cm Volume of the cuboid = length×breadth×height =12×8×6 =576 cm 3(ii)In the given cuboid, we have:length=1.2 m=1.2×100 cm  (1 m = 100 cm)=120 cmbreadth=30 cmheight=15 cm Volume of the cuboid = length×breadth×height=120×30×15=54000 cm  3(iii)In the given cuboid, we have:length=1.5 dm =1.5×10   (1 dm = 10 cm)  = 15 cmbreadth=2.5 dm=2.5×10 cm=25 cmheight=8 cmVolume of cuboid = length×breadth×height=15×25×8=3000 cm  3

Question 2:

Find the volume of a cube whose side is
(i) 4 cm
(ii) 8 cm
(iii) 1.5 dm
(iv) 1.2 m
(v) 25 mm

Answer 2:

(i)The side of the given cube is 4 cm.∴ Volume of the cube=(side)3=(4)3=64 cm3(ii)The side of the given cube is 8 cm.∴ Volume of the cube=(side)3 = (8)3 = 512 cm3(iii)The side of the given cube = 1.5 dm=1.5×10 cm=15 cm∴ Volume of the cube=(side)3=(15)3=3375 cm3(iv)The side of the given cube = 1.2 m=1.2×100 cm=120 cm∴ Volume of the cube=(side)3=(120)3=1728000 cm3(v)The side of the given cube = 25 mm = 2510  cm=2.5 cm∴ Volume of the cube=(side)3=(2.5)3=15.625 cm3

Question 3:

Find the height of a cuboid of volume 100 cm3, whose length and breadth are 5 cm and 4 cm respectively.

Answer 3:

Let us suppose that the height of the cuboid is h cm.Given:Volume of the cuboid= 100 cm3Length=5 cmBreadth=4 cmNow, volume of the cuboid=length×breadth×height100=5×4×h100=20×h h=10020=5 cm

Question 4:

A cuboidal vessel is 10 cm long and 5 cm wide. How high it must be made to hold 300 cm3 of a liquid?

Answer 4:

Let h cm be the height of the cuboidal vessel.Given:Length =10 cmBreadth=5 cmVolume of the vessel=300 cm3Now, volume of a cuboid=length×breadth×height300=10×5×h300=50×h h=30050=6 cm

Question 5:

A milk container is 8 cm long and 50 cm wide. What should be its height so that it can hold 4 litres of milk?

Answer 5:

Length of the cuboidal milk container=8 cm Breadth=50 cmLet h cm be the height of the container.It is given that the container can hold 4 L of milk.i.e., volume=4 L=4×1000 cm3=4000 cm3  ( 1 L=1000 cm3)Now, volume of the container=length×breadth×height4000=8×50×h4000=400×hh=4000400=10 cm The height of the milk container is 10 cm.

Question 6:

A cuboidal wooden block contains 36 cm3 wood. If it be 4 cm long and 3 cm wide, find its height.

Answer 6:

A cuboidal wooden block contains 36 cm3 of wood.i.e., volume=36 cm3Length of the block=4 cmBreadth of block=3 cmSuppose that the height of the block is h cmNow, volume of a cuboid=lenght×breadth×height36=4×3×h36=12×hh=3612=3 cm The height of the wooden block is 3 cm.

Question 7:

What will happen to the volume of a cube, if its edge is
(i) halved
(ii) trebled?

Answer 7:

(i)Suppose that the length of the edge of the cube is x. Then, volume of the cube=(side)3=x3When the length of the side is halved, the length of the new edge becomes x2.Now, volume of the new cube=(side)3=x23=x323=x38=18×x3It means that if the edge of a cube is halved, its new volume will be 18 times the initial volume.(ii)Suppose that the length of the edge of the cube is x. Then, volume of the cube=(side)3=x3When the length of the side is trebled, the length of the new edge becomes 3×x.Now, volume of the new cube=(side)3=(3×x)3=33×x3=27×x3Thus, if the edge of a cube is trebled, its new volume will be 27 times the initial volume.

Question 8:

What will happen to the volume of a cuboid if its:
(i) Length is doubled, height is same and breadth is halved?
(ii) Length is doubled, height is doubled and breadth is sama?

Answer 8:

(i)Suppose that the length, breadth and height of the cuboid are l, b and h, respectively.Then, volume =l×b×hWhen its length is doubled, its length becomes 2×l.When its breadth is halved, its length becomes b2.The height h remains the same.Now, volume of the new cuboid=length×breadth×height=2×l×b2×h=l×b×h It can be observed that the new volume is the same as the initial volume. So, there is no change in volume. (ii)Suppose that the length, breadth and height of the cuboid are l, b and h, respectively.Then, volume =l×b×hWhen its length is doubled, its length becomes 2×l.When its height is double, it becomes 2×h.The breadth b remains the same. Now, volume of the new cuboid=length×breadth×height=2×l×b×2×h=4×l×b×h It can be observed that the volume of the new cuboid is four times the initial volume.

Question 9:

Three cuboids of dimensions 5 cm × 6 cm × 7cm, 4cm × 7cm × 8 cm and 2 cm × 3 cm × 13 cm are melted and a cube is made. Find the side of cube.

Answer 9:

The dimensions of the three cuboids are 5 cm×6 cm×7 cm,  4 cm×7 cm×8 cm and  2 cm×3 cm×13 cm.Now, a new cube is formed by melting the given cuboids. Voulume of the cube=sum of the volumes of the cuboids=(5 cm×6 cm×7 cm)+(4 cm×7 cm×8 cm)+(2 cm×3 cm×13 cm)=(210 cm3)+(224 cm3)+(78 cm3)=512 cm3Since volume of a cube=(side)3, we have:512=(side)3(side)=5123=8 cm The side of the new cube is 8 cm.

Question 10:

Find the weight of solid rectangular iron piece of size 50 cm × 40 cm × 10cm, if 1 cm3 of iron weighs 8 gm.

Answer 10:

The dimension of the rectangular piece of iron is 50 cm×40 cm×10 cm.i.e., volume = 50 cm×40 cm×10 cm=20000 cm3It is given that the weight of 1 cm3 of iron is 8 gm.  The weight of the given piece of iron =20000×8 gm                                                                 =160000 gm                                                                 =160×1000 gm                                                                  =160 kg ( 1 kg=1000 gm)

Question 11:

How many wooden cubical blocks of side 25 cm can be cut from a log of wood of size 3 m by 75 cm by 50 cm, assuming that there is no wastage?

Answer 11:

The dimension of the log of wood is 3 m×75 cm×50 cm, i.e., 300 cm×75 cm×50 cm ( 3 m= 100 cm). Volume =300 cm×75 cm×50 cm=1125000 cm3It is given that the side of each cubical block of wood is of 25 cm.Now, volume of one cubical block=(side)3                              =253                              =15625 cm3 The required number of cubical blocks=volume of the wood logvolume of one cubical block                                               =1125000 cm315625 cm3                                               =72

Question 12:

A cuboidal block of silver is 9 cm long, 4 cm broad and 3.5 cm in height. From it, beads of volume 1.5 cm3 each are to be made. Find the number of beads that can be made from the block.

Answer 12:

Length of the cuboidal block of silver=9 cm Breadth=4 cm Height=3.5 cmNow, volume of the cuboidal block=length×breadth×height                                           =9×4×3.5                                            =126 cm3 The required number of beads of volume 1.5 cm3 that can be made from the block=volume of the silver blockvolume of one bead                                                                                                               =126 cm31.5 cm3                                                                                                               =84 

Question 13:

Find the number of cuboidal boxes measuring 2 cm by 3 cm by 10 cm which can be stored in a carton whose dimensions are 40 cm, 36 cm and 24 cm.

Answer 13:

Dimension of one cuboidal box = 2 cm×3 cm×10 cmVolume =(2×3×10) cm3=60 cm3It is given that the dimension of a carton is 40 cm×36 cm×24 cm, where the boxes can be stored. Volume of the carton=(40×36×24) cm3=34560 cm3 The required number of cuboidal boxes that can be stored in the carton=volume of the cartonvolume of one cuboidal box=34560 cm360 cm3=576

Question 14:

A cuboidal block of solid iron has dimensions 50 cm, 45 cm and 34 cm. How many cuboids of size 5 cm by 3 cm by 2 cm can be obtained from this block? Assume cutting causes no wastage.

Answer 14:

Dimension of the cuboidal iron block = 50 cm×45 cm×34 cmVolume of the iron block=length×breadth×height=(50×45×34) cm3=76500 cm3It is given that the dimension of one small cuboids is 5cm×3 cm×2 cm.Volume of one small cuboid=length×breadth×height=(5×3×2) cm3=30 cm3 The required number of small cuboids that can be obtained from the iron block=volume of the iron blockvolume of one small cuboid=76500 cm330 cm3=2550

Question 15:

A cube A has side thrice as long as that of cube B. What is the ratio of the volume of cube A to that of cube B?

Answer 15:

Suppose that the length of the side of cube B is l cm.Then, the length of the side of cube A is 3×l cm.Now, ratio=volume of cube Avolume of cube B=(3×l)3 cm3(l)3 cm3=33×l3l3=271 The ratio of the volume of cube A to the volume of cube B is 27:1.

Page-21.9

Question 16:

An ice-cream brick measures 20 cm by 10 cm by 7 cm. How many such bricks can be stored in deep fridge whose inner dimensions are 100 cm by 50 cm by 42 cm?

Answer 16:

Dimension of an ice cream brick = 20 cm×10 cm×7 cmIts volume=length×breadth×height=(20×10×7) cm3=1400 cm3Also, it is given that the inner dimension of the deep fridge is 100 cm×50 cm×42 cm.Its volume=length×breadth×height=(100×50×42) cm3=210000 cm3 The number of ice cream bricks that can be stored in the fridge=volume of the fridgevolume of an ice cream brick=210000 cm31400 cm3=150

Question 17:

Suppose that there are two cubes, having edges 2 cm and 4 cm, respectively. Find the volumes V1 and V2 of the cubes and compare them.

Answer 17:

The edges of the two cubes are 2 cm and 4 cm.Volume of the cube of side 2 cm, V1=(side)3=(2)3=8 cm3Volume of the cube of side 4 cm, V2=(side)3=(4)3=64 cm3We observe the following:V2=64 cm3=8×8 cm3=8×V1 V2=8V1

Question 18:

A tea-packet measures 10 cm × 6 cm × 4 cm. How many such tea-packets can be placed in a cardboard box of dimensions 50 cm × 30 cm × 0.2 m?

Answer 18:

Dimension of a tea packet is 10 cm×6 cm×4 cm.Volume of a tea packet=length×breadth×height=(10×6×4) cm3=240 cm3Also, it is given that the dimension of the cardboard box is 50 cm×30 cm×0.2 m, i.e., 50 cm×30 cm×20 cm  ( 1 m=100 cm)Volume of the cardboard box=length×breadth×height=(50×30×20) cm3=30000 cm3 The number of tea packets that can be placed inside the cardboard box=volume of the boxvolume of a tea packet=30000 cm3240 cm3=125

Question 19:

The weight of a metal block of size 5 cm by 4 cm by 3 cm is 1 kg. Find the weight of a block of the same metal of size 15 cm by 8 cm by 3 cm.

Answer 19:

The weight of the metal block of dimension 5 cm×4 cm×3 cm is 1 kg.Its volume=length×breadth×height=(5×4×3) cm3=60 cm3i.e., the weight of 60 cm3 of the metal is 1 kgAgain, the dimension of the other block which is of same metal is 15 cm×8 cm×3 cm.Its volume=length×breadth×height=(15×8×3) cm3=360 cm3 The weight of the required block =360 cm3                                            =6×60 cm3 ( Weight of 60 cm3 of the metal is 1Kg)                                            =6×1 kg                                             =6 kg

Question 20:

How many soap cakes can be placed in a box of size 56 cm × 0.4 m × 0.25 m, if the size of a soap cake is 7 cm × 5 cm × 2.5 cm?

Answer 20:

Dimension of a soap cake = 7cm×5 cm×2.5 cmIts volume=length×breadth×height=(7×5×2.5) cm3=87.5 cm3Also, the dimension of the box that contains the soap cakes is 56 cm×0.4 m×0.25 m, i.e., 56 cm×40cm×25 cm ( 1 m = 100 cm).Volume of the box=length×breadth×height=(56×40×25) cm3=56000 cm3 The number of soap cakes that can be placed inside the box=volume of the boxvolume of a soap cake=56000 cm387.5 cm3=640

Question 21:

The volume of a cuboidal box is 48 cm3. If its height and length are 3 cm and 4 cm respectively, find its breadth.

Answer 21:

Suppose that the breadth of the box is b cm.Volume of the cuboidal box=48 cm3Height of the box=3 cm  Length of the box=4 cmNow, volume of box=length×breadth×height48=4×b×348=12×bb=4812=4 cm The breadth of the cuboidal box is 4 cm.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *