RD Sharma solution class 8 chapter 2 Powers Exercise (MCQs)

Exercise (MCQs)

Page-2.22

Question 1:

Square of -23 is
(a) -23
(b) 23
(c) -49
(d) 49

Answer 1:

(d) 4/9
To square a number is to raise it to the power of 2. Hence, the square of (−2/3) is
(-2)232 = 49      ---> ( (a/b)n =  (an)/(bn) )               


Question 2:

Cube of -12 is
(a) 18
(b) 116
(c) -18
(d) -116

Answer 2:

(c) -1/8
The cube of a number is the number raised to the power of 3. Hence the cube of −1/2 is

(-1)323        ---> ( (a/b)n = (an)/(bn)
  =-18
Page-2.23


Question 3:

Which of the following is not equal to -354?
(a) (-3)454
(b) 34(-5)4
(c) -3454
(d) -35×-35×-35×-35

Answer 3:

(c)  −(34/54)

-354 = (-3)454 = 34(-5)4 = -35×-35×-35×-35
It is not equal to -3454.


Question 4:

Which  of the following is not reciprocal of 234?
(a) 324
(b) 23-4
(c) 32-4
(d) 3424

Answer 4:

(c) (3/2)−4
The reciprocal of left (frac{2}{3} right )^4is left (frac{3}{2} right )^4.
Therefore, option (a) is the correct answer.
Option (b) is just re-expressing the number with a negative exponent.
Option (d) is obtained by working out the exponent.
Hence,option (c) is not the reciprocal of  left (frac{2}{3} right )^4.


Question 5:

Which of the following numbers is not equal to -827?
(a) 23-3
(b) -233
(c) -233
(d) -23×-23×-23

Answer 5:

(a) (2/3)-3

We can write frac{-8}{27} as frac{-2times(-2)times(-2)}{3times3times3}. It can be written in the forms given below.


frac{-2times(-2)times(-2)}{3times3times3}=-frac{2times2times2}{3times3times3}            ---> work out the minuses
                               =-frac{2}{3}timesfrac{2}{3}timesfrac{2}{3}
                               =-left (frac{2}{3} right )^3                   
Hence, option (b) is equal to frac{-8}{27}.

We can also write:
frac{-2times(-2)times(-2)}{3times3times3}=left (-frac{2}{3} right )timesleft (-frac{2}{3} right )timesleft (-frac{2}{3} right )
                               =left (-frac{2}{3} right )^3
Hence, option (c) is also equal to frac{-8}{27}.

We can also write:
frac{-2times(-2)times(-2)}{3times3times3}=left (-frac{2}{3} right )timesleft (-frac{2}{3} right )timesleft (-frac{2}{3} right )
Hence, option (d) is also equal to -827.

This leaves out option (a) as the one not equal to -827.


Question 6:

23-5 is equal to
(a) -235
(b) 325
(c) 2x-53
(d) 23×5

Answer 6:

(b)325

Rearrange (2/3)−5 to get a positive exponent.
23-5=1235         a-n=1an=12535                       abn=anbn=3525=325


Question 7:

-125×-123 is equal to
(a) -128
(b) -128
(c) 148
(d) -1215

Answer 7:

(a) (−1/2)8

We have:

left (frac{-1}{2} right )^5timesleft (frac{-1}{2} right )^3=left (frac{-1}{2} right )^{5+3}
                              =left (frac{-1}{2} right )^8


Question 8:

-153÷-158 is equal to
(a) -155
(b) -1511
(c) (-5)5
(d) 155

Answer 8:

(c)  (−5)5

We have:

left(frac{-1}{5} right )^3 div left(frac{-1}{5} right )^8 =left(frac{-1}{5} right )^{3-8}
                                        =left(frac{-1}{5} right )^{-5}
                                        =frac{1}{(-1/5)^5}
                                        =frac{1}{((-1)^5/5^5)}
                                        =frac{5^5}{(-1)^5}
                                        =left (frac{5}{-1} right )^5
                                        =left(-5 right )^5


Question 9:

-257÷-255 is equal to
(a) 425
(b) -425
(c) -2512
(d) 254

Answer 9:

(a) 4/25

We have:

left(frac{-2}{5} right )^7 div left(frac{-2}{5} right )^5 =left(frac{-2}{5} right )^{7-5}
                                        =left (frac{-2}{5} right )^{2}
                                        =frac{(-2)^2}{5^2}
                                        =frac{4}{25}


Question 10:

1324 is equal to
(a) 136
(b) 138
(c) 1324
(d) 1316

Answer 10:

(b) (1/3)8

We have:

left(left(frac{1}{3} right )^2 right )^4=left(frac{1}{3} right )^{2times4}          ---> ( (am)n = amxn)
                       =left(frac{1}{3} right )^{8}
Page-2.24


Question 11:

150 is equal to
(a) 0
(b) 15
(c) 1
(d) 5

Answer 11:

(c) 1

We have:

left (frac{1}{5} right )^0=1         ---> (a0 = 1, for every non-zero rational number a.)


Question 12:

-32-1 is equal to
(a) 23
(b) -23
(c) 32
(d) none of these

Answer 12:

(b)-frac{2}{3}
We have:

left (frac{-3}{2} right )^{-1}=frac{1}{(-3)/2}          --> (a−1 = 1/a)
                    =frac{2}{-3}
                   


Question 13:

23-5×57-5 is equal to
(a) 23×57-10
(b) 23×57-5
(c) 23×5725
(d) 23×57-25

Answer 13:

(b)left(frac{2}{3}times frac{5}{7} right ) ^{-5}

We have:

left(frac{2}{3} right ) ^{-5}times left(frac{5}{7} right ) ^{-5} =left(frac{2}{3}times frac{5}{7} right ) ^{-5}          ---> ((a x b)n = an x bn)


Question 14:

345÷535 is equal to

Answer 14:

(a)  34÷535

We have:

left(frac{3}{4}right )^5 div left(frac{5}{3}right )^5 =left(frac{3}{4}divfrac{5}{3} right )^5            ---> an ÷ bn=a÷bn


Question 15:

For any two non-zero rational numbers a and b, a4 ÷ b4 is equal to
(a) (a ÷ b)1
(b) (a ÷ b)0
(c) (a ÷ b)4
(d) (a ÷ b)8

Answer 15:

(c)left(adiv b right )^4
This is one of the basic exponential formulae, i.e. left(adiv b right )^n = a^n div b^n.


Question 16:

For any two rational numbers a and b, a5 × b5 is equal to
(a) (a × b)0
(b) (a × b)10
(c) (a × b)5
(d) (a × b)25

Answer 16:

(c) (a x b)5
an x bn = (a x b)n
Hence,
a5 x b5 = (a x b)5


Question 17:

For a non-zero rational number a, a7 ÷ a12 is equal to
(a) a5
(b) a−19
(c) a−5
(d) a19

Answer 17:

(c) a−5
a^m div a^n = a^{m-n}
Hence,
a^7 div a^{12}=a^{7-12}=a^{-5}


Question 18:

For a non zero rational number a, (a3)−2 is equal to
(a) a9
(b) a−6
(c) a−9
(d) a1

Answer 18:

(b) a−6

We have:

left (a^3 right )^{-2}=a^{3times(-2)}          ---> ((am)n = am x n)
               =a^{-6}

No comments:

Post a Comment

Contact Form

Name

Email *

Message *