RD Sharma solution class 8 chapter 2 Powers Exercise 2.2

Exercise 2.2

Page-2.18

Question 1:

Write each of the following in exponential form:
(i) 32-1×32-1×32-1×32-1
(ii) 25-2×25-2×25-2

Answer 1:

(i) 32-1×32-1×32-1×32-1=32-1+-1+-1+-1                                am×an=am+n  =32-4(ii) 25-2×25-2×25-2=25-2+-2+-2                                                                  am×an=am+n=25-6                                                                                    

Question 2:

Evaluate:
(i) 5−2
(ii) (−3)−2
(iii) 13-4
(iv) -12-1

Answer 2:

(i) 5-2=152              ---> (an = 1/(an))
              =125

(ii) (-3)2=132              ---> (an = 1/(an))
                        =19

(iii) 13-4=11/34              ---> (an = 1/(an))
                          =11/81
                          = 81

(iv) -12-1= 1-1/2         ---> (a−1 = 1/(a))
                              =-2
                             

Question 3:

Express each of the following as a rational number in the form pq:
(i) 6−1
(ii) (−7)−1
(iii) 14-1
(iv) (-4)-1×-32-1
(v) 35-1×52-1

Answer 3:

(i) 6-1=16                ---> (a−1 = 1/a)

(ii) (-7)-1=1-7             ---> (a−1 = 1/a)
                        =-17

(iii) 14-1=11/4             ---> (a−1 = 1/a)
                          =4


(iv)  (-4)-1×-32-1=1-4×1-3/2           ---> (a−1 = 1/a)
                                                  =1-4×2-3
                                                  =16

(v)left(frac{3}{5} right )^{-1}times left(frac{5}{2} right )^{-1}=frac{1}{3/5}times frac{1}{5/2}             ---> (a−1 = 1/a)
                                              =53×25
                                              =23

Question 4:

Simplify:
(i) 4-1×3-12
(ii) 5-1÷6-13
(iii) 2-1+3-1-1
(iv) 3-1×4-1-1×5-1
(v) 4-1-5-1÷3-1

Answer 4:

(i)left(4^{-1}times3^{-1} right )^2=left(frac{1}{4}times frac{1}{3}right )^2              ---> (a−1 = 1/a)
                                  =1122
                                  =(1)2(12)2                         --->((a/b)n = (an)/(bn))
                                  =1144

(ii)left(5^{-1}div6^{-1} right )^3=left(frac{1}{5}divfrac{1}{6} right)^3         ---> (a−1 = 1/a)
                                    =653
                                    =216125                         --->((a/b)n = (an)/(bn))


 (iii) 2-1 + 3-1-1 = 12+ 13-1     ---> (a-1= 1/a)   = 56-1 = 65                ---> (a-1= 1/a)


(iv)left(3^{-1}times4^{-1} right )^{-1}times5^{-1}=left(frac{1}{3}timesfrac{1}{4} right )^{-1}timesfrac{1}{5}         ---> (a−1 = 1/a)
                                                     =112-1×15
                                                     =12×15                              ---> (a−1 = 1/a)
                                                     =125

(v)left(4^{-1}-5^{-1} right )div 3^{-1}=left(frac{1}{4}-frac{1}{5} right )div frac{1}{3}         ---> (a−1 = 1/a)
                                               =left(frac{5-4}{20} right )times 3
                                               =120×3

                                               =320

Question 5:

Express each of the following rational numbers with a negative exponent:
(i) 143
(ii) 35
(iii) 354
(iv) 324-3
(v) 734-3

Answer 5:

i.   143=41-3     a-n = 1anii.     35=13-5    a-n = 1aniii.   354=53-4    a-n = 1aniv.  324-3=32-12     amn = amnv.  734-3=73-12     amn = amn

Page-2.19

Question 6:

Express each of the following rational numbers with a positive exponent:
(i) 34-2
(ii) 54-3
(iii) 43×4-9
(iv) 43-3-4
(v) 324-2

Answer 6:

(i) 34-2 = 432          ---> (a−1 = 1/a)
                                      
 (ii) 54-3    = 453                   ---> (a−1 = 1/a)  

(iii) 43×4-9 = 43-9 = 4-6= 146         ---> (am x an = am+n)

(iv) 43-3-4= 43-4×-3= 4312   ---> ((am)n = amn)

(v) 324-2= 324×-2=  32-8= 238 ---> ((am)n = amn)

                    

Question 7:

Simplify:
(i) 13-3-12-3÷14-3
(ii) 32-22×23-3
(iii) 12-1×(-4)-1-1
(iv) -142-2-1
(v) 2323×13-4×3-1×6-1

Answer 7:

(i)left(left(frac{1}{3} right )^{-3}- left(frac{1}{2} right )^{-3}right )div left(frac{1}{4} right )^{-3}=left(frac{1}{(1/3)^3}- frac{1}{left (1/2 right )^3}right )divfrac{1}{(1/4)^{3}}            ---> (an = 1/(an))
                                                                          =left(frac{1}{(1/27)}- frac{1}{left (1/8 right )}right )divfrac{1}{(1/64)}
                                                                          =left(frac{27}{1}- frac{8}{1}right )div64
                                                                          =left(19right )timesfrac{1}{64}
                                                                          =frac{19}{64}

(ii)left(3^2-2^2right )times left(frac{2}{3} right )^{-3}=left(9-4 right )timesfrac{1}{(2/3)^3}           ---> (an = 1/(an))
                                                  =5timesfrac{1}{8/27}
                                                  =5timesfrac{27}{8}
                                                  =frac{135}{8}

(iii)left(left(frac{1}{2}right )^{-1}times left(-4 right )^{-1}right)^{-1}=left (left(frac{1}{1/2}right )times left(frac{1}{-4} right ) right )^{-1}           ---> (a−1 = 1/a)
                                                            =left (2times left (frac{1}{-4} right ) right )^{-1}
                                                            =left (frac{1}{-2} right )^{-1}
                                                            =frac{1}{1/(-2)}                                               ---> (a−1 = 1/a)
                                                            =-2

(iv)left(left(left(frac{-1}{4} right )^2 right )^{-2} right )^{-1}=left (left (frac{(-1)^2}{4^2} right )^{-2} right )^{-1}          --> ((a/b)n = an/(bn))
                                                    =left (left (frac{1}{16} right )^{-2} right )^{-1}                  ---> (an = 1/(an))
                                                    =left (left (frac{1}{(1/16)^2} right ) right )^{-1}
                                                    =left (frac{1}{(1/256)} right )^{-1}
                                                    =256^{-1}                                     ---> (a−1 = 1/a)
                                                    =frac{1}{256}

(v)left(left(frac{2}{3} right )^2 right )^3timesleft(frac{1}{3} right )^{-4}times3^{-1}times6^{-1} =left (frac{2^2}{3^2} right )^3timesfrac{1}{(1/3)^4}timesfrac{1}{3}timesfrac{1}{6}   ---> ((a/b)n = an/(bn)) and (an = 1/(an))
                                                                               =left (frac{4}{9} right )^3timesfrac{1}{(1/81)}timesfrac{1}{3}timesfrac{1}{6}
                                                                               =frac{4^3}{9^3}times81timesfrac{1}{18}                             ---> ((a/b)n = an/(bn))
                                                                              =frac{64}{729}times81timesfrac{1}{18}
                                                                               =frac{64}{9}timesfrac{1}{18}
                                                                               =64timesfrac{1}{162}
                                                                               =frac{64}{162}
                                                                               =frac{32}{81}

Question 8:

By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?

Answer 8:

Expressing in fraction form, we get:
5−1 = 1/5 (using the property a−1 = 1/a)
and
(−7)−1 = −1/7 (using the property a−1 = 1/a).
We have to find a number x such that
frac{1}{5}x=frac{-1}{7}
Multiplying both sides by 5, we get:
x=-frac{5}{7}
Hence, 5−1 should be multiplied by −5/7 to obtain (−7)−1.

Question 9:

By what number should 12-1 be multiplied so that the product may be equal to -47-1?

Answer 9:

Expressing in fractional form, we get:
(1/2)−1 = 2,       ---> (a−1 = 1/a)
and
(−4/7)−1 = −7/4     ---> (a−1 = 1/a)
We have to find a number x such that
2x=-frac{7}{4}
Dividing both sides by 2, we get:
x=-frac{7}{8}
Hence, (1/2)−1 should be multiplied by −7/8 to obtain (−4/7)−1.

Question 10:

By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?

Answer 10:

Expressing in fractional form, we get:
(−15)−1 = −1/15,      ---> (a−1 = 1/a)
and
(−5)−1 = −1/5           ---> (a−1 = 1/a)
We have to find a number x such that
-frac{1}{15}div x=-frac{1}{5}
Solving this equation, we get:
-frac{1}{15}times frac{1}{x}=-frac{1}{5}
          -frac{1}{15}=-frac{x}{5}
          frac{-5}{-15}=x
therefore x=frac{1}{3}
Hence, (−15)−1 should be divided by 1/3 to obtain (−5)−1.

Question 11:

By what number should 53-2 be multiplied so that the product may be 73-1?

Answer 11:

Expressing as a positive exponent, we have:
left (frac{5}{3} right )^{-2}=frac{1}{(5/3)^2}        ---> (a−1 = 1/a)
                =frac{1}{25/9}            ---> ((a/b)n = (an)/(bn))
                =frac{9}{25}
and
(7/3) 1 = 3/7.                ---> (a−1 = 1/a)
We have to find a number x such that
frac{9}{25}times x=frac{3}{7}
Multiplying both sides by 25/9, we get:
x=frac{3}{7}timesfrac{25}{9}=frac{1}{7}timesfrac{25}{3}=frac{25}{21}
Hence, (5/3)−2 should be multiplied by 25/21 to obtain (7/3)−1.

Question 12:

Find x, if
(i) 14-4×14-8=14-4x
(ii) -12-19×-128=-12-2x+1
(iii) 32-3×325=322x+1
(iv) 25-3×2515=252+3x
(v) 54-x÷54-4=545
(vi) 832x+1×835=83x+2

Answer 12:

(i) We have:

left(frac{1}{4} right )^{-4}timesleft(frac{1}{4} right )^{-8}&=&left(frac{1}{4} right )^{-4x}
                    left(frac{1}{4} right )^{-12}right )&=&left(frac{1}{4} right )^{-4x} (am×an = am+n)
                            -12=-4x
                                  3=x
x = 3

(ii) We have:

left(frac{-1}{2} right )^{-19}timesleft(frac{-1}{2} right )^{8}=left(frac{-1}{2} right )^{-2x+1}
                      left(frac{-1}{2} right )^{-11}=left(frac{-1}{2} right )^{-2x+1}(am×an = am+n)
                                  -11=-2x+1
                                  -12=-2x
                                        6=x
x = 6

(iii) We have:

left(frac{3}{2} right )^{-3}timesleft(frac{3}{2} right )^{5}=left(frac{3}{2} right )^{2x+1}
                      left(frac{3}{2} right )^{2}=left(frac{3}{2} right )^{2x+1}
                                2=2x+1
                                1=2x
                                frac{1}{2}=x
x = 1/2

(iv) We have:

left(frac{2}{5} right )^{-3}timesleft(frac{2}{5} right )^{15}=left(frac{2}{5} right )^{2+3x}
                     left(frac{2}{5} right )^{12}=left(frac{2}{5} right )^{2+3x}
                              12=2+3x
                              10=3x
                             frac{10}{3}=x
x = 10/3

(v) We have:

left(frac{5}{4} right )^{-x}divleft(frac{5}{4} right )^{-4}=left(frac{5}{4} right )^{5}
                 left(frac{5}{4} right )^{-x+4}=left(frac{5}{4} right )^{5}
                     -x+4=5
                              -x=1
                                  x=-1
x = −1

(vi) We have:

left(frac{8}{3} right )^{2x+1}timesleft(frac{8}{3} right )^{5}=left(frac{8}{3} right )^{x+2}
                  left(frac{8}{3} right )^{2x+6}=left(frac{8}{3} right )^{x+2}
                        2x+6=x+2
                                  x=-4
x = −4

Question 13:

(i) If x=322×23-4, find the value of x−2.
(ii) If x=45-2÷142, find the value of x−1.

Answer 13:

(i) First, we have to find x.

x = 322×23-4  = 322×324   = 326          --->(a−1 = 1/a)
   
   
Hence, x−2 is:

x-2 = 326-2 = 32-12  = 2312             --->(a−1 = 1/a)


(ii) First, we have to find x.
x=left(frac{4}{5} right )^{-2} div left(frac{1}{4}right)^{2}    ---> ((a/b)n = (an)/(bn))
    =left(frac{4^{-2}}{5^{-2}} right ) times4^2
    =frac{4^{0}}{5^{-2}}
    =frac{1}{5^{-2}}                            ---> (a0 = 1)
Hence, the value of x−1 is:
x^{-1}=left (frac{1}{5^{-2}} right )^{-1}
         =left (5^2 right )^{-1}          --->(a−1 = 1/a)
         =frac{1}{5^{2}}                  --->(a−1 = 1/a)

Question 14:

Find the value of x for which 52x ÷ 5−3 = 55.

Answer 14:

We have:
5^{2x}div 5^{-3}=5^5
         5^{2x+3}=5^5          ---> a^mdiv a^n=a^{m-n}
      2x+3=5
              2x=2
                x=1

Hence, x is 1.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *