RD Sharma solution class 8 chapter 2 Powers Exercise 2.1

Exercise 2.1

Page-2.8

Question 1:

Express each of the following as a rational number of the form pq, where p and q are integers and q ≠ 0.
(i) 2−3
(ii) (−4)−2
(iii) 13-2
(iv) 12-5
(v) 23-2

Answer 1:

We know that a-n = 1an. Therefore,

(i)
 2^{-3} = frac{1}{2^{3}}=frac{1}{8}

(ii)


(iii)
frac{1}{3^{-2}} = 3^2=9

(iv)
left (frac{1}{2} right )^{-5} = 2^5=32

(v)
left (frac{2}{3} right )^{-2} = left (frac{3}{2} right )^{2}=frac{9}{4}

Question 2:

Fiind the value of each of the following:
(i) 3−1 + 4−1
(ii) (30 + 4−1) × 22
(iii) (3−1 + 4−1 + 5−1)0
(iv) 13-1-14-1-1

Answer 2:

(i) We know from the property of powers that for every natural number a, a−1 = 1/a. Then:
3^{-1}+4^{-1}=frac{1}{3}+frac{1}{4}          ---> (a−1 = 1/a)
                      =frac{4+3}{12}
                      =frac{7}{12}

(ii) We know from the property of powers that for every natural number a, a−1 = 1/a.
Moreover, a0 is 1 for every natural number a not equal to 0. Then:

30+4-1×22=1+14×4    as, a-1=1a; a0=1=54×4=5
                 

(iii) We know from the property of powers that for every natural number a, a−1 = 1/a.
Moreover, a0 is 1 for every natural number a not equal to 0. Then:
(3-1+4-1+5-1)=1          ---> (Ignore the expression inside the bracket and use a0 = 1 immediately.)

(iv) We know from the property of powers that for every natural number a, a−1 = 1/a. Then:
left (left (frac{1}{3} right )^{-1}-left (frac{1}{4} right )^{-1} right )^{-1}=left ( 3-4 right )^{-1}          ---> (a−1 = 1/a)
                                                  =left ( -1 right )^{-1}
                                                  =-1                       ---> (a−1 = 1/a)

Question 3:

Find the value of each of the following:
(i) 12-1+13-1+14-1
(ii) 12-2+13-2+14-2
(iii) (2−1 × 4−1) ÷ 2−2
(iv) (5−1 × 2−1) ÷ 6−1

Answer 3:

(i)
12-1+13-1+14-1=11/2+11/3+11/4          --> (a−1 = 1/a)
                                                           =2+3+4
                                                           =12

(ii)
12-2+13-2+14-2=11/22+11/32+11/42        --> (an = 1/(an))
                                                         = 11/4+11/9+11/16              --> ((a/b)n = (an/bn))
                                                         = 4+9+16
                                                          =29

(iii)
(2-1×4-1)÷2-2=12×14÷122   --> (an = 1/(an))
           
                                       =18×4
                                       = 2

(iv)
(5-1×2-1)÷6-1=15×12÷16             --> (an = 1/(an))
                                       =110×6

                                       =35

Question 4:

Simplify:
(i) 4-1×3-12
(ii) 5-1÷6-13
(iii) 2-1+3-1-1
(iv) 3-1×4-1-1×5-1

Answer 4:

(i)
left (4^{-1}times 3^{-1} right )^2=left (frac{1}{4}times frac{1}{3} right )^2          ---> (a−1 = 1/a)
                            =left (frac{1}{12} right )^2
                            =frac{1^2}{12^2}                          ---> ((a/b)n = (an)/(bn) )
                            =124

(ii)
left (5^{-1}div 6^{-1} right )^3=left (frac{1}{5}div frac{1}{6} right )^3          ---> (a−1 = 1/a)
                           =left (frac{1}{5}times6 right )^3
                            =  653
                            =  6353                         ---> ((a/b)n = (an)/(bn) )

                            = 216125

(iii)
(2-1+3-1)-1 =12+13-1          ---> (a−1 = 1/a)
                             =  56-1
                               =15/6                          ---> (a−1 = 1/a)
                               =65

(iv)
left (3^{-1}times 4^{-1} right )^{-1}times 5^{-1}=left (frac{1}{3}times frac{1}{4} right )^{-1}times frac{1}{5}          ---> (a−1 = 1/a)
                                            =left (frac{1}{12}right )^{-1}times frac{1}{5} 
                                            =125                                      ---> (a−1 = 1/a)

Question 5:

Simplify:
(i) 32+22×123
(ii) 32-22×23-3
(iii) 13-3-12-3÷14-3
(iv) 22+32-42÷322

Answer 5:

(i)
(32+22)×123=(9+4)×18=138

(ii)
left ( 3^2-2^2 right )times left(frac{2}{3} right )^{-3}=left(9-4 right )times frac{1}{left (2/3 right )^{3}}              ---> (a−1=1/(an))
                                          =5times frac{1}{8/27}                              ---> ((a/b)n = (an)/(bn))
                                          =5×278
                                          =1358

(iii)
left( left(frac{1}{3} right )^{-3}-left(frac{1}{2} right )^{-3}right )div left( frac{1}{4}right )^{-3}=left(3^3-2^3 right )div 4^3            --->(a-n = 1/(an))
                                                                  = (27-8)÷64
                                                                   =19×164
                                                                   =1964


(iv)
(22+32-42)÷322=(4+9-16)×94                    ---> ((a/b)n = (an)/(bn))

                                                  =-3×94
                                                  =-274

Question 6:

By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?

Answer 6:

Using the property a−1 = 1/a for every natural number a, we have 5−1 = 1/5 and (−7)−1 = −1/7. We have to find a number x such that
15×x=-17
Multiplying both sides by 5, we get:
x=-57
Hence, the required number is −5/7.

Question 7:

By what number should 12-1 be multiplied so that the product may be equal to -47-1?

Answer 7:

Using the property a−1 = 1/a for every natural number a, we have (1/2)−1 = 2 and (−4/7)−1 = −7/4. We have to find a number x such that
2x=-74
Dividing both sides by 2, we get:
x=-78
Hence, the required number is −7/8.

Question 8:

By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?

Answer 8:

Using the property a−1 = 1/a for every natural number a, we have (−15)−1 = −1/15 and (−5)−1 = −1/5. We have to find a number x such that
-115x1= -15or -115×1x= -15or x = 13
Hence, (−15)−1 should be divided by 13 to obtain (−5)−1.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *