RD Sharma solution class 8 chapter 19 Visualising Shapes Exercise 19.1

Exercise 19.1

Page-19.9

Question 1:

What is the least number of planes that can enclose a solid? What is the name of the solid?

Answer 1:

The least number of planes that can enclose a solid is 4.Tetrahedron is a solid with four planes (faces).

Question 2:

Can a polyhedron have for its faces:
(i) 3 triangles?
(ii) 4 triangles?
(iii) a square and four triangles?

Answer 2:

(i)No, because in order to complete a polyhedron, we need at least four triangular faces. (ii)Yes, a polyhedron with 4 triangular faces is a tetrahedron.(iii)Yes, with the help of a square bottom and four triangle faces, we can form a pyramid.

Question 3:

Is it possible to have a polyhedron with any given number of faces?

Answer 3:

Yes, it is possible to have a polyhedron with any number of faces. The only condition is that there should be at least four faces. This is because there is no possible polyhedron with 3 or less faces.

Question 4:

Is a square prism same as a cube?

Answer 4:

Yes, a square prism and a cube are the same.Both of them have 6 faces, 8 vertices and 12 edges.The only difference is that a cube has 6 equal faces, while a square prism has a shape like a cuboid with two squarefaces, one at the top and the other at the bottom and with, possibly, 4 rectangular faces in between. 

Question 5:

Can a polyhedron have 10 faces, 20 edges and 15 vertices?

Answer 5:

No, because every polyhedron satisfies Euler's formula, given below: F+V=E+2Here, number of faces F = 10Number of edges E = 20Number of vertices V = 15So, by Euler's formula:LHS: 10+15 = 25RHS:  20+2 = 22,which is not true because 25≠22Hence, Eulers formula is not satisfied and no polyhedron may be formed.

Question 6:

Verify Euler's formula for each of the following polyhedrons:

Answer 6:

(i)In the given polyhedron:Edges E=15Faces F=7Vertices V=10


Now, putting these values in Euler's formula:LHS: F+V= 7+10= 17LHS: E+2=15+2=17LHS = RHS Hence, the Euler's formula is satisfied.

(ii)In the given polyhedron:Edges E=16Faces F=9Vertices V=9


Now, putting these values in Euler's formula:RHS: F+V= 9+9= 18LHS: E+2=16+2=18LHS = RHSHence, Euler's formula is satisfied.

(iii)In the following polyhedron:Edges E=21Faces F=9Vertices V=14

Now, putting these values in Euler's formula:LHS: F+V= 9+14= 23RHS: E+2=21+2=23This is true. Hence, Euler's formula is satisfied.

(iv)In the following polyhedron:Edges E=8Faces F=5Vertices V=5

Now, putting these values in Euler's formula:LHS: F+V= 5+5= 10RHS: E+2=8+2=10LHS = RHSHence, Euler's formula is satisfied.

(v)In the following polyhedron:Edges E=16Faces F=9Vertices V=9

Now, putting these values in Euler's formula:LHS: F+V= 9+9= 18RHS: E+2=16+2=18LHS = RHSHence, Euler's formula is satisfied.

Page-19.10

Question 7:

Using Euler's formula find the unknown:

Faces ? 5 20
Vertices 6 ? 12
Edges 12 9 ?

Answer 7:

We know that the Euler's formula is: F+V = E+2(i) The number of vertices V is 6 and the number of edges E is 12.Using Euler's formula:F+6 = 12+2F+6 = 14F = 14-6F = 8So, the number of faces in this polyhedron is 8.(ii)Faces, F = 5Edges, E = 9.We have to find the number of vertices.Putting these values in Euler's formula:5+V = 9+25+V = 11V = 11-5V = 6So, the number of vertices in this polyhedron is 6.(iii)Number of faces F = 20Number of vertices V = 12Using Euler's formula:20+12 =  E+232 = E+2E+2 = 32E = 32-2E = 30.So, the number of edges in this polyhedron is 30.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *