RD Sharma solution class 8 chapter 14 Compound Interest Exercise 14.2

Exercise 14.2

Page-14.14

Question 1:

Compute the amount and the compound interest in each of the following by using the formulae when:
(i) Principal = Rs 3000, Rate = 5%, Time = 2 years
(ii) Principal = Rs 3000, Rate = 18%, Time = 2 years
(iii) Principal = Rs 5000, Rate = 10 paise per rupee per annum, Time = 2 years
(iv) Principal = Rs 2000, Rate = 4 paise per rupee per annum, Time = 3 years
(v) Principal = Rs 12800, Rate = 712%, Time = 3 years
(vi) Principal = Rs 10000, Rate 20% per annum compounded half-yearly, Time = 2 years
(vii) Principal = Rs 160000, Rate = 10 paise per rupee per annum compounded half-yearly, Time = 2 years.

Answer 1:

Applying the rule A=P1+R100n on the given situations, we get:(i)A=3,0001+51002=3,0001.052=Rs 3,307.50Now,CI=A-P=Rs 3,307.50-Rs 3,000=Rs 307.50(ii)A=3,0001+181002=3,0001.182=Rs 4,177.20Now,CI=A-P=Rs 4,177.20-Rs 3,000=Rs 1,177.20(iii)A=5,0001+101002=5,0001.102=Rs 6,050Now,CI=A-P=Rs 6,050-Rs 5,000=Rs 1,050(iv)A=2,0001+41003=2,0001.043=Rs 2,249.68Now,CI=A-P=Rs 2,249.68-Rs 2,000=Rs 249.68(v)A=12,8001+7.51003=12,8001.0753=Rs 15,901.40Now,CI=A-P=Rs 15,901.40-Rs 12,800=Rs 3,101.40(vi)A=10,0001+202004=10,0001.14=Rs 14,641Now,CI=A-P=Rs 14,641-Rs 10,000=Rs 4,641(vii)A=16,0001+102004=16,0001.054=Rs 19,448.1Now,CI=A-P=Rs 19,448.1-Rs 16,000=Rs 3,448.1

Question 2:

Find the amount of Rs 2400 after 3 years, when the interest is compounded annually at the rate of 20% per annum.

Answer 2:

Given: P=Rs 2,400R=20% p.a.n=3 yearsWe know that amount A at the end of n years at the rate R% per annum when the interest is compounded annually is given by A=P1+R100n. A=2,4001+201003        =2,4001.23        =4,147.20Thus, the required amount is Rs 4,147.20.

Question 3:

Rahman lent Rs 16000 to Rasheed at the rate of 1212% per annum compound interest. Find the amount payable by Rasheed to Rahman after 3 years.

Answer 3:

Given: P=Rs 16,000 R=12.5% p.a.n=3 yearsWe know that amount A at the end of n years at the rate R% per annum when the interest is compounded annually is given by A=P1+R100n. A=16,0001+12.51003        =16,0001.1253        =22,781.25Thus, the required amount is Rs 22,781.25.

Question 4:

Meera borrowed a sum of Rs 1000 from Sita for two years. If the rate of interest is 10% compounded annually, find the amount that Meera has to pay back.

Answer 4:

Given: P=Rs 1,000R=10% p.a. n=2 yearsWe know that amount A at the end of n years at the rate R% per annum when the interest is compounded annually is given by A=P1+R100. A=1,0001+101002=1,0001.12=1,210Thus, the required amount is Rs 1,210.

Question 5:

Find the difference between the compound interest and simple interest. On a sum of Rs 50,000 at 10% per annum for 2 years.

Answer 5:

Given: P=Rs 50,000R=10% p.a. n=2 yearsWe know that amount A at the end of n years at the rate R% per annum when the interest is compounded annually is given by A=P1+R100. A=Rs 50,0001+101002        =Rs 50,0001.12        =Rs 60,500Also,CI=A-P    =Rs 60,500- Rs 50,000    =Rs 10,500We know that:SI=PRT100   =50,000×10×2100   =Rs 10,000 Difference between CI and SI=Rs 10,500-Rs 10,000                                                         =Rs 500

Page-14.15

Question 6:

Amit borrowed Rs 16000 at 1712% per annum simple interest. On the same day, he lent it to Ashu at the same rate but compounded annually. What does he gain at the end of 2 years?

Answer 6:

Amount to be paid by Amit:SI=PRT100    =16000×17.5×2100    =Rs 5,600Amount gained by Amit:A=P1+R100n   =Rs 16,0001+17.51002   =Rs 16,0001.1752   =Rs 22,090We know that:CI=A-P    =Rs 22,090-Rs 16,000    =Rs 6090Amit's gain in the whole transaction=Rs 6,090-Rs 5,600                                                               =Rs 490

Question 7:

Find the amount of Rs 4096 for 18 months at 1212% per annum, the interest being compounded semi-annually.

Answer 7:

Given:P=Rs 4,096R=12.5% p.a.n=18 months=1.5 yearsWe have:A=P1+R100nWhen the interest is compounded semi-annually, we have:A=P1+R2002n  =Rs 4,0961+12.52003  =Rs 4,0961.06253  =Rs 4,913Thus, the required amount is Rs 4,913.

Question 8:

Find the amount and the compound interest on Rs 8000 for 112 years at 10% per annum, compounded half-yearly.

Answer 8:

Given: P=Rs 8,000R=10% p.a. n=1.5 yearsWhen compounded half-yearly, we have:A=P1+R2002n  =Rs 8,0001+102003  =Rs 8,0001.053  =Rs 9,261Also,CI=A-P    =Rs 9,261-Rs 8,000    =Rs 1,261

Question 9:

Kamal borrowed Rs 57600 from LIC against her policy at 1212% per annum to build a house. Find the amount that she pays to the LIC after 112 years if the interest is calculated half-yearly.

Answer 9:

Given: P=Rs 57,600R=12.5% p.a.n=1.5 yearsWhen the interest is compounded half-yearly, we have: A=P1+R2002n  =Rs 57,6001+12.52003  =Rs 57,6001.06253  =Rs 69,089.06Thus, the required amount is Rs 69,089.06.

Question 10:

Abha purchased a house from Avas Parishad on credit. If the cost of the house is Rs 64000 and the rate of interest is 5% per annum compounded half-yearly, find the interest paid by Abha after one year and a half.

Answer 10:

Given:P=Rs 64,000R=5% p.a. n=1.5 yearsWhen the interest is compounded half-yearly, we have:A=P1+R2002n  =Rs 64,0001+52003  =Rs 64,0001.0253  =Rs 68,921Also,CI=A-P    =Rs 68,921-Rs 64,000    =Rs 4,921Thus, the required interest is Rs 4,921.

Question 11:

Rakesh lent out Rs 10000 for 2 years at 20% per annum, compounded annually. How much more he could earn if the interest be compounded half-yearly?

Answer 11:

Given:P=Rs 10,000R=20% p.a.n=2 yearsA=P1+R100n  = Rs 10,0001+201002  =Rs 10,0001.22  =Rs 14,400When the interest is compounded half-yearly, we have:A=P1+R2002n  =Rs 10,0001+202004  =Rs 10,0001.14  =Rs 14,641Difference=Rs 14,641-Rs 14,400                  =Rs 241

Question 12:

Romesh borrowed a sum of Rs 245760 at 12.5% per annum, compounded annually. On the same day, he lent out his money to Ramu at the same rate of interest, but compounded semi-annually. Find his gain after 2 years.

Answer 12:

Given: P=Rs 245,760R=12.5% p.a.n=2 yearsWhen compounded annually, we have:A=P1+R100n   =Rs 245,7601+12.51002   =Rs 311,040When compounded semi-annually, we have:A=P1+R2002n   =Rs 245,7601+12.52004   =Rs 245,7601.06254   =Rs 313,203.75Romesh's gain=Rs 313,203.75-Rs 311,040                            =Rs 2,163.75

Question 13:

Find the amount that David would receive if he invests Rs 8192 for 18 months at 1212% per annum, the interest being compounded half-yearly.

Answer 13:

Given:P=Rs 8,192R=12.5% p.a.n=1.5 yearsWhen the interest is compounded half-yearly, we have:A=P1+R2002n   =Rs 8,1921+12.52003   =Rs 8,1921.06253   =Rs 9,826Thus, the required amount is Rs 9,826.

Question 14:

Find the compound interest on Rs 15625 for 9 months, at 16% per annum, compounded quarterly.

Answer 14:

Given: P=Rs 15,625R=16%=164=4% quarterlyn=9 months=3 quartersWe know that:A=P1+R100n   =Rs 15,6251+41003   =Rs 15,6251.043   =Rs 17,576Also,CI=A-P    =Rs 17,576-Rs 15,625    =Rs 1,951Thus, the required compound interest is Rs 1,951.

Question 15:

Rekha deposited Rs 16000 in a foreign bank which pays interest at the rate of 20% per annum compounded quarterly, find the interest received by Rekha after one year.

Answer 15:

Given:P=Rs 16,000R=20% p.a.n=1 yearWe know that:A=P1+R100nWhen compounded quarterly, we have:A=P1+R4004n   =Rs 16,0001+204004   =Rs 16,0001.054   =Rs 19,448.10Also,CI=A-P    =Rs 19,448.1-Rs 16,000    =Rs 3,448.10Thus, the interest received by Rekha after one year is Rs 3,448.10.

Question 16:

Find the amount of Rs 12500 for 2 years compounded annually, the rate of interest being 15% for the first year and 16% for the second year.

Answer 16:

Given: P=Rs 12,500R1=15% p.a.R2=16% p.a. Amount after two years=P1+R11001+R2100=Rs 12,5001+151001+16100=Rs 12,5001.151.16=Rs 16,675Thus, the required amount is Rs 16,675.

Question 17:

Ramu borrowed Rs 15625 from a finance company to buy a scooter. If the rate of interest be 16% per annum compounded annually, what payment will he have to make after 214 years?

Answer 17:

Given: P=Rs 15,625R=16% p.a.n=214 years Amount after 214 years=P1+R10021+14(R)100=Rs 15,6251+1610021+164100=Rs 15,6251.1621.04=Rs 21,866Thus, the required amount is Rs 21,866.

Question 18:

What will Rs 125000 amount to at the rate of 6%, if the interest is calculated after every 3 months?

Answer 18:

Because interest is calculated after every 3 months, it is compounded quarterly.Given:P=Rs 125,000R=6% p.a.=64% quarterly=1.5% quarterlyn=4So,A=P1+R100n  =125,0001+1.51004  =125,0001.0154  =132,670 approxThus, the required amount is Rs 132,670.

Question 19:

Find the compound interest at the rate of 5% for three years on that principal which in three years at the rate of 5% per annum gives Rs 12000 as simple interest.

Answer 19:

P=SI×100RTAccording to the given values, we have: =12,000×1005×3=80,000The principal is to be compounded annually. So, A=P1+R100n    =80,0001+51003    =80,0001.053    =92,610Now,CI=A-P    =92,610-80,000    =12,610Thus, the required compound interest is Rs 12,610.  

Question 20:

A sum of money was lent for 2 years at 20% compounded annually. If the interest is payable half-yearly instead of yearly, then the interest is Rs 482 more. Find the sum.

Answer 20:

A=P1+R100nAlso, P=A-CILet the sum of money be Rs x.If the interest is compounded annually, then:A1=x1+201002    =1.44x CI=1.44x-x         =0.44x         ...(1)If the interest is compounded half-yearly, then:A2=x1+101004    =1.4641x CI=1.4641x-x         =0.4641x    ...(2)It is given that if interest is compounded half-yearly, then it will be Rs 482 more.0.4641x=0.44x+482    [From (1) and (2)]0.4641x-0.44x=4820.0241x=482x=4820.0241  =20,000Thus, the required sum is Rs 20,000.  

Question 21:

Simple interest on a sum of money for 2 years at 612% per annum is Rs 5200. What will be the compound interest on the sum at the same rate for the same period?

Answer 21:

P=SI×100RT P=5,200×1006.5×2        =40,000Now,A=P1+R100n   =40,0001+6.51002   =40,0001.0652   =45,369Also,CI=A-P    =45,369-40,000    =5,369Thus, the required compound interest is Rs 5,369.  

Question 22:

Find the compound interest at the rate of 5% per annum for 3 years on that principal which in 3 years at the rate of 5% per annum gives Rs 1200 as simple interest.

Answer 22:

We know that:P=SI×100RT P=1200×1005×3        =8,000Now,A=P1+R100n   =8,0001+51003   =8,0001.053   =9,261Now,CI=A-P    =9,261-8,000    =1,261Thus, the required compound interest is Rs 1,261.  

No comments:

Post a Comment

Contact Form

Name

Email *

Message *