RD Sharma solution class 8 chapter 1 Rational Numbers Exercise 1.6

Exercise 1.6

Page-1.31

Question 1:

Verify the property: x × y = y × x by taking:
(i) x=-13, y=27
(ii) x=-35, y=-1113
(iii) x=2, y=7-8
(iv) x=0, y=-158

Answer 1:

We have to verify that x×y=y×x.(i) x=-13, y=27x×y=-13×27=-221y×x=27×-13=-221 -13×27=27×-13Hence verified.(ii) x=-35, y=-1113x×y=-35×-1113=3365y×x=-1113×-35=3365 -35×-1113=-1113×-35 Hence verified.(iii) x=2, y=7-8 x×y=2×7-8= 7-4y×x=7-8×2= 7-4 2×7-8=7-8×2Hence verified.(iv) x=0, y=-158 x×y=0×-158=0y×x=-158×0=0 0×-158=-158×0Hence verified.

Question 2:

Verify the property: x × (y × z) = (x × y) × z by taking:

(i) x=-73, y=125, z=49

(ii) x=0, y=-35, z=-94

(iii) x=12, y=5-4, z=-75

(iv) x=57, y=-1213, z=-718

Answer 2:

We have to verify that x×(y×z)=(x×y)×z.(i) x=-73, y=125, z=49x×(y×z)=-73×(125×49)=-73×1615=-11245(x×y)×z=(-73×125)×49=-285×49=-11245-78×(155×49)=(-78×155)×49Hence verified.(ii) x=0, y=-35, z=-94x×(y×z)= 0×(-35×-94)= 0×2720=0(x×y)×z=(0×-35)×-94= 0×-94=0 0×(-35×-94)=(0×-35)×-94Hence verified.(iii) x=12, y=5-4, z=-74x×(y×z)= 12×(5-4×-74)=12×3516=3532(x×y)×z=(12×5-4)×-74=5-8×-74=3532 12×(5-4×-74)=(12×5-4)×-74Hence verified. (iv) x=57, y=-1213, z=-718x×(y×z)=57×(-1213×-718)=57×1439=1039(x×y)×z=57×-1213)×-718=-6091×-718=1039 57×(-1213×-718)=(57×-1213)×-718Hence verified.

Page-1.32

Question 3:

Verify the property: x × (y + z) = x × y + x × z by taking:

(i) x=-37, y=1213, z=-56

(ii) x=-125, y=-154, z=83

(iii) x=-83, y=56, z=-1312

(iv) x=-34, y=-52, z=76

Answer 3:

We have to verify that  x×(y+z)=x×y+x×z.(i) x=-37, y=1213, z=-56x×(y+z)=-37×(1213+-56)=-37×72-6578=-37×778= -126x×y+x×z=-37×1213+-37×-56=-3691+514=-36×2+5×13182=-72+65182=-126 -37×(1213+-56)=-37×1213+-37×-56Hence verified.(ii) x=-125, y=-154, z=83x×(y+z)=-125×(-154+83)=-125×-45+3212=-125×-1312=135x×y+x×z=-125×-154+-125×83=91+-325=45-325=135-125×(-154+83)=-125×-154+-125×83Hence verified.(iii) x=-83, y=56, z=-1312x×(y+z)=-83×(56+-1312)=-83×10-1312=-83×-312=23x×y+x×z=-83×56+-83×-1312=-209+269=-20+269=23 -83×(56+-1312)=-83×56+-83×-1312Hence verified . (iv) x=-34, y=-52, z=76x×(y+z)=-34×(-52+76)=-34×-15+76=-34×-86=1x×y+x×z=-34×-52+-34×76=158+-78=15-78=1-34×(-52+76)=-34×-52+-34×76Hence verified.

Question 4:

Use the distributivity of multiplication of rational numbers over their addition to simplify:
(i) 35×3524+101

(ii) -54×85+165

(iii) 27×716-214

(iv) 34×89-40

Answer 4:

(i) 35×(3524+101)=35×3524+35×101=78+61=7+488=558(ii) -54×(85+165)=-54×85+-54×165=-21+-41=-6(iii) 27×(716-214)=27×716-27×214=18-32=1-128=-118(iv) 34×(89-40)=34×89-34×40=23-30=2-903=-883

Question 5:

Find the multiplicative inverse (reciprocal) of each of the following rational numbers:
(i) 9
(ii) −7
(iii) 125
(iv) -79
(v) -3-5
(vi) 23×94
(vii) -58×1615
(viii) -2×-35
(ix) −1
(x) 03
(xi) 1

Answer 5:

(i) Multiplicative inverse (reciprocal) of 9 = 19(ii) Multiplicative inverse (reciprocal) of -7 = -17(iii) Multiplicative inverse (reciprocal) of 125 = 512(iv) Multiplicative inverse (reciprocal) of -79 = -97(v) Multiplicative inverse (reciprocal) of -3-5 = -5-3 or 53(vi) Multiplicative inverse (reciprocal) of 23×94 = 32×49=23(vii) Multiplicative inverse (reciprocal) of -58×1615 = 8-5×1516=-32(viii) Multiplicative inverse (reciprocal) of -2×-35 = 1-2×5-3=56(ix) Multiplicative inverse (reciprocal) of -1 = 1-1=-1(x) Multiplicative inverse (reciprocal) of 03 = 30=undefined (ix) Multiplicative inverse (reciprocal) of 1 = 11=1

Question 6:

Name the property of multiplication of rational numbers illustrated by the following statements:
(i) -516×815=815×-516

(ii) -175×9=9×-175

(iii) 74×-83+-1312=74×-83+74×-1312

(iv) -59×415×-98=-59×415×-98

(v) 13-17×1=13-17=1×13-17

(vi) -1116×16-11=1

(vii) 213×0=0=0×213

(viii) -32×54+-32×-76=-32×54+-76

Answer 6:

(i) Commutative property
(ii) Commutative property
(iii) Distributivity of multiplication over addition
(iv) Associativity of multiplication
(v) Existence of identity for multiplication
(vi) Existence of multiplicative inverse
(vii) Multiplication by 0
(viii) Distributive property

Question 7:

Fill in the blanks:
(i) The product of two positive rational numbers is always .....
(ii) The product of a positive rational number and a negative rational number is always .....
(iii) The product of two negative rational numbers is always .....
(iv) The reciprocal of a positive rational number is .....
(v) The reciprocal of a negative rational number is .....
(vi) Zero has ..... reciprocal.
(vii) The product of a rational number and its reciprocal is .....
(viii) The numbers ..... and ..... are their own reciprocals.
(ix) If a is reciprocal of b, then the reciprocal of b is .....
(x) The number 0 is ..... the reciprocal of any number.
(xi) Reciprocal of 1a, a0 is .....
(xii) (17 × 12)−1 = 17−1 × .....

Answer 7:


(i) Positive
(ii) Negative
(iii) Positive
(iv) Positive
(v) Negative
(vi) No
(vii) 1
(viii) -1 and 1
(ix) a
(x) not
(xi) a
(xii) 12-1

Page-1.33

Question 8:

Fill in the blanks:
(i) -4×79=79× ......
(ii) 511×-38=-38× ......
(iii) 12×34+-512=12×......+......×-512
(iv) -45×57+-89=-45×.....×-89

Answer 8:

(i) -4x×y=y×x  (commutativity)(ii) 511x×y=y×x  (commutativity)(iii) 34;12x×(y+z)=x×y+x×z  (distributivity of multiplication over addition)(iv) 57x×(y×z)=(x×y)×z  (associativity of multiplication )

No comments:

Post a Comment

Contact Form

Name

Email *

Message *