RD Sharma solution class 7 chapter 7 Algebraic Expression Objective Type Questions

Objective Type Questions

Page-7.21


Question 1:

Mark the correct alternative in the following question:

Which of the following pairs is/are like terms?
(1) x           (2) x2           (3) 3x3           (4) 4x3

(a) 1, 2                               (b) 2, 3                               (c) 3, 4                              (d) None of these

Answer 1:

Since, 3x3 and 4x3 is the pair of like terms.

Hence, the correct option is (c).


Question 2:

Mark the correct alternative in the following question:

Which of the following is not a monomial?

(a) 2x2 + 1                           (b) 3x4                           (c) ab                           (d) x2y

Answer 2:

Since, 2x2 + 1 has two terms 2x2 and 1.

So, 2x2 + 1 is a binomial.

Hence, the correct alternative is option (a).


Question 3:

Mark the correct alternative in the following question:

The sum of the coefficients in the monomials 3a2b and -2ab2 is

(a) 5                           (b) -1                           (c) 1                           (d) 6

Answer 3:

Since, the coefficient in the monomial 3a2b is 3 and the coefficient in the monomial -2ab2 is -2.

So, the sum of the coefficients in the monomials 3a2b and -2ab2 = 3 + (-2) = 3 - 2 = 1

Hence, the correct alternative is option (c).


Question 4:

Mark the correct alternative in the following question:

The coefficient of x2 in -53x2y is equal toa -53                                  b -53y                                  c 53                                  d 53y

Answer 4:

Since, the coefficient of x2 in -53x2y is equal to -53y.

Hence, the correct alternative is option (b).


Question 5:

Mark the correct alternative in the following question:

If a, b and c are respectively the coefficients of x2 in -x2, 2x2 + x and 2x - x2, respectively, then a + b + c =

(a) 0                                         (b) -2                                         (c) 2                                         (d) -1

Answer 5:

As, the coefficient x2 in -x= -1, the coefficient x2 in 2x2 + x = 2 and the coefficient x2 in 2x - x= -1.

Now, a + b + c = (-1) + 2 + (-1) = -2 + 2 = 0

Hence, the correct alternative is option (a).


Question 6:

Mark the correct alternative in the following question:

The sum of the coefficients in the terms of 2x2y - 3xy2 + 4xy is

(a) -3                                     (b) 3                                     (c) 9                                     (d) 5

Answer 6:

As, the coefficient in the term 2x2y = 2, the coefficient in the term -3xy2 = -3 and the coefficient in the term 4xy = 4.

So, the sum of the coefficients in the terms of 2x2y - 3xy2 + 4xy = 2 + (-3) + 4 = -3 + 6 = 3

Hence, the correct alternative is option (b).


Question 7:

Mark the correct alternative in the following question:

The product of the coefficients of terms in -43ab2+14bc2+3ca2 isa 1                                   b 12                                   c -1                                   d 3

Answer 7:

As, the coefficient of the term -43ab2 is -43,the coefficient of the term 14bc2 is 14 andthe coefficient of the term 3ca2 is 3.So, the product of the coefficients of the terms=-43×14×3=-1

Hence, the correct alternative is option (c).


Question 8:

Mark the correct alternative in the following question:

If a and b are respectively the sum and product of coefficients of terms in the expression x2 + y2 + z2 - xy - yz - zx, then a + 2b =

(a) 0                                             (b) 2                                             (c) -2                                             (d) -1

Answer 8:

We have,
The expression x2 + y2 + z2 - xy - yz - zx,
 
Terms Coefficients
x2 1
y2 1
z2 1
-xy -1
-yz -1
-zx -1
Sum, a 0
Product, b -1

So, a + 2b = 0 + 2(-1) = -2

Hence, the correct alternative is option (c).


Question 9:

Mark the correct alternative in the following question:

If P=3x3+3x2+3x+3 and Q=3x2-3x+3, then P-Q=a 3x3                                 b 3x3+6x2+6x+6                                 c 6x2+6x+6                                 d 3x3+6x

Answer 9:

We have,P=3x3+3x2+3x+3 and Q=3x2-3x+3Now,P-Q=3x3+3x2+3x+3-3x2-3x+3=3x3+3x2+3x+3-3x2+3x-3=3x3+6x

Hence, the correct alternative is option (d).


Question 10:

Mark the correct alternative in the following question:

The sum of the values of the expression 2x2 + 2x + 2 when x = -1 and x = 1 is

(a) 6                                         (b) 8                                         (c) 4                                         (d) 2

Answer 10:

Since, when x = -1, the value of the expression 2x2 + 2x + 2 = 2(-1)2 + 2(-1) + 2 = 2 - 2 + 2 = 2

And, when x = 1, the value of the expression 2x2 + 2x + 2 = 2(1)2 + 2(1) + 2 = 2 + 2 + 2 = 6

So, the sum of the values of the expression 2x2 + 2x + 2 when x = -1 and x = 1 = 2 + 6 = 8

Hence, the correct alternative is option (b).


Question 11:

Mark the correct alternative in the following question:

What should be added to 3x2 + 4 to get 9x2 - 7?

(a) 6x2 - 11                               (b) 6x2 + 11                               (c) 12x2 - 11                               (d) 12x2 + 11

Answer 11:

Since, (9x2 - 7) - (3x2 + 4) = 9x2 - 7 - ​3x2 - 4 = 6x2 - 11

 So, 6x2 - 11 should added to 3x2 + 4 to get 9x2 - 7.

Hence, the correct alternative is option (a).


Question 12:

Mark the correct alternative in the following question:

How much is a2 - 3a greater than 2a2 + 4a?

(a) a2 - 7a                                (b) a2 + 7a                                (c) -a2 - 7a ​                               (d) -a2 + 7a

Answer 12:

Since, (a2 - 3a- (2a2 + 4a) = a2 - 3a - 2a2 - 4a- a2 -​7a

So, a2 - 3a is greater than 2a2 + 4a by - a2 -​7a.

Hence, the correct alternative is option (c).


Question 13:

Mark the correct alternative in the following question:

How much is -2x2 + x + 1 less than x2 + 2x - 3?

(a) -x2 + 3x - 2                      (b) 3x2 + x - 4                      (c) -3x2 - x + 4                       (d) 3x2 + 3x - 4

Answer 13:

Since, (x2 + 2x - 3) - (-2x2 + x + 1) = x2 + 2x - 3 + 2x2 - x - 1 = 3x2 + x - 4

So, -2x2 + x + 1 is less than x2 + 2x - 3 by 3x2 + x - 4.

Hence, the correct alternative is option (b).
Page-7.22

Question 14:

Mark the correct alternative in the following question:

​What should be added to xy + yz + zx to get -xy - yz - zx?

(a) -2xy - 2yz - 2zx                       (b) -3xy - yz - zx                       (c) -3xy - 3yz - 3zx ​                      (d) 2xy + 2yz + 2zx

Answer 14:

Since, (-xy - yz - zx- (xy + yz + zx) = -xy - yz - zx - xy - yz - zx-2xy - 2yz - 2zx

So, -2xy - 2yz - 2zx should be added to xy + yz + zx to get -xy - yz - zx.

Hence, the correct alternative is option (a).

No comments:

Post a Comment

Contact Form

Name

Email *

Message *