Exercise 7.3
Page-7.16Question 1:
Place the last two terms of the following expressions in parentheses preceded by a minus sign:
(i) x + y − 3z + y
(ii) 3x − 2y − 5z − 4
(iii) 3a − 2b + 4c − 5
(iv) 7a + 3b + 2c + 4
(v) 2a2 − b2 − 3ab + 6
(vi) a2 + b2 − c2 + ab − 3ac
Answer 1:
We have
(i) x + y − 3z + y = x + y − (3z - y )
(ii) 3x − 2y − 5z − 4 = 3x - 2y - (5z + 4)
(iii) 3a − 2b + 4c − 5 = 3a - 2b - (- 4c + 5)
(iv) 7a + 3b + 2c + 4 = 7a + 3b - (- 2c - 4)
(v) 2a2 − b2 − 3ab + 6 = 2a2 − b2 − (3ab - 6)
(vi) a2 + b2 − c2 + ab − 3ac = a2 + b2 − c2 - (- ab + 3ac)
Question 2:
Write each of the following statements by using appropriate grouping symbols:
(i) The sum of a − b and 3a − 2b + 5 is subtracted from 4a + 2b − 7.
(ii) Three times the sum of 2x + y − {5 − (x − 3y)} and 7x − 4y + 3 is subtracted from 3x − 4y + 7.
(iii) The subtraction of x2 − y2 + 4xy from 2x2 + y2 − 3xy is added to 9x2 − 3y2 − xy.
Answer 2:
(i) The sum of a − b and 3a − 2b + 5 = {(a - b) + (3a − 2b + 5)}.
This is subtracted from 4a + 2b - 7.
Thus, the required expression is {4a + 2b - 7) - {(a - b) + (3a − 2b + 5)}.
(ii) Three times the sum of 2x + y − {5 − (x − 3y)} and 7x − 4y + 3 = 3[(2x + y) − {5 − (x − 3y)} + (7x − 4y + 3)].
This is subtracted from 3x - 4y +7.
Thus, the required expression is (3x - 4y +7) - 3[(2x + y) − {5 − (x − 3y)} + (7x − 4y + 3)].
(iii) The product of subtraction of x2 − y2 + 4xy from 2x2 + y2 − 3xy is given by {(2x2 + y2 − 3xy) - (x2 − y2 + 4xy)}.
When the above equation is added to 9x2 − 3y2 − xy, we get
{(2x2 + y2 − 3xy) - (x2 − y2 + 4xy)} + (9x2 − 3y2 − xy)
No comments:
Post a Comment