Exercise 7.2
Page-7.13Question 1:
Add the following:
(i) 3x and 7x
(ii) −5xy and 9xy
Answer 1:
We have
(i) 3x + 7x = (3 + 7)x = 10x
(ii) -5xy + 9xy = ( -5 + 9)xy = 4xy
Question 2:
Simplify each of the following:
(i) 7x3y + 9yx3
(ii) 12a2b + 3ba2
Answer 2:
Simplifying the given expressions, we have
(i) 7x3y + 9yx3 = (7 + 9)x3y = 16x3y
(ii) 12a2b + 3ba2 = (12 + 3)a2b = 15a2b
Question 3:
Add the following:
(i) 7abc, −5abc, 9abc, −8abc
(ii) 2x2y, − 4x2y, 6x2y, −5x2y
Answer 3:
Adding the given terms, we have
(i) 7abc + (- 5abc) + (9 abc) + (- 8abc)
= 7abc - 5abc + 9abc - 8abc
= (7 - 5 + 9 - 8)abc
= (16 - 13)abc
= 3abc
(ii) 2x2y + (- 4x2y) + 6x2y + (- 5x2y)
= 2x2y - 4x2y + 6x2y - 5x2y
= (2 - 4 + 6 - 5)x2y
= (8 - 9)x2y
= -x2y
Question 4:
Add the following expressions:
(i)
(ii)
Answer 4:
Adding the given expressions, we have
(i) x3- 2x2y + 3xy2- y3+ 2x3- 5xy2 + 3x2y- 4y3
Collecting positive and negative like terms together, we get
x3+ 2x3- 2x2y + 3x2y + 3xy2- 5xy2 - y3 - 4y3
= 3x3 + x2y - 2xy2 - 5y3
(ii) (a4- 2a3b + 3ab3 + 4a2b2 + 3b4) + (-2a4- 5ab3 + 7a3b - 6a2b2 + b4)
a4- 2a3b + 3ab3 + 4a2b2 + 3b4 - 2a4- 5ab3 + 7a3b - 6a2b2 + b4
Collecting positive and negative like terms together, we get
a4 - 2a4 - 2a3b + 7a3b + 3ab3 - 5ab3 + 4a2b2 - 6a2b2 + 3b4 + b4
= - a4 + 5a3b - 2ab3 - 2a2b2 + 4b4
Question 5:
Add the following expressions:
(i)
(ii)
Answer 5:
(i) Required expression = (8a - 6ab + 5b) + (- 6a - ab - 8b) + ( - 4a + 2ab + 3b)
Collecting positive and negative like terms together, we get
8a - 6a - 4a - 6ab - ab + 2ab + 5b - 8b + 3b
= 8a - 10a - 7ab + 2ab + 8b - 8b
= - 2a - 5ab
(ii) Required expression = (5x3 + 7 + 6x - 5x2) + (2x2 - 8 - 9x) + (4x - 2x2 + 3x3) + (3x3- 9x - x2) + ( x - x2 - x3- 4)
Collecting positive and negative like terms together, we get
5x3+ 3x3 + 3x3- x3- 5x2 + 2x2 - 2x2 - x2- x2 + 6x - 9x + 4x - 9x + x + 7 - 8 - 4
= 11x3 - x3 - 7x2 + 11x - 18x + 7 - 12
= 10x3 - 7x2 - 7x - 5
Question 6:
Add the following:
(i)
(ii)
Answer 6:
(i) Required expression = (x - 3y - 2z) + (5x +7y - 8z) +(3x - 2y + 5z)
Collecting positive and negative like terms together, we get
x + 5x + 3x - 3y + 7y - 2y - 2z - 8z + 5z
= 9x - 5y + 7y - 10z + 5z
= 9x + 2y - 5z
(ii) Required expression = (4ab - 5bc + 7ca) + (- 3ab + 2bc - 3ca ) + (5ab - 3bc + 4ca)
Collecting positive and negative like terms together, we get
4ab - 3ab + 5ab - 5bc + 2bc - 3bc + 7ca - 3ca + 4ca
= 9ab - 3ab - 8bc + 2bc + 11 ca - 3ca
= 6ab - 6bc + 8ca
Question 7:
Add 2x2 − 3x + 1 to the sum of 3x2 − 2x and 3x + 7.
Answer 7:
Sum of 3x2 - 2x and 3x + 7
= (3x2 - 2x) + ( 3x +7)
= 3x2 - 2x + 3x + 7
= (3x2 + x + 7)
Now, required expression = (2x2 - 3x + 1) + (3x2 + x + 7)
= 2x2 + 3x2 - 3x + x + 1 + 7
= 5x2 - 2x + 8
Question 8:
Add x2 + 2xy + y2 to the sum of x2 − 3y2 and 2x2 − y2+ 9.
Answer 8:
Sum of x2 - 3y2 and 2x2 - y2 + 9
= (x2 - 3y2) + (2x2 - y2 + 9)
= x2 + 2x2 - 3y2 - y2+ 9
= 3x2 - 4y2 + 9
Now, required expression = (x2 + 2xy + y2) + (3x2 - 4y2 + 9)
= x2 + 3x2 + 2xy + y2 - 4y2 + 9
= 4x2 + 2xy - 3y2 + 9
Question 9:
Add a3 + b3 − 3 to the sum of 2a3 − 3b3 − 3ab + 7 and −a3 + b3 + 3ab −9.
Answer 9:
First, we need to find the sum of 2a3 - 3b3 - 3ab + 7 and - a3 + b3 + 3ab - 9.
= (2a3 - 3b3 - 3ab + 7) + (- a3 + b3 + 3ab - 9)
Collecting positive and negative like terms together, we get
= 2a3 - a3- 3b3 + b3 - 3ab + 3ab + 7 - 9
= a3 - 2b3 - 2
Now, the required expression = (a3 + b3 - 3) + (a3 - 2b3 - 2).
= a3 + a3 + b3- 2b3 - 3 - 2
= 2a3 - b3 - 5
Question 10:
Subtract:
(i) 7a2b from 3a2b
(ii) 4xy from −3xy
Answer 10:
(i) Required expression = 3a2b - 7a2b
= (3 - 7)a2b
= - 4a2b
(ii) Required expression = - 3 xy - 4xy
= - 7xy
Question 11:
Subtract:
(i) −4x from 3y
(ii) −2x from −5y
Answer 11:
(i) Required expression = (3y) - (-4x)
= 3y + 4x
(ii) Required expression = (-5y) - (-2x)
= -5y + 2x
Question 12:
Subtract:
(i)
(ii)
(iii)
Answer 12:
(i) Required expression = (4 - 5x + 6x2 - 8x3) - (6x3 - 7x2 + 5x - 3)
= 4 - 5x + 6x2 - 8x3 - 6x3 + 7x2 - 5x + 3
= - 8x3- 6x3 + 7x2 + 6x2- 5x - 5x + 3 + 4
= - 14x3 + 13x2 - 10x +7
(ii) Required expression = (5x2 - y + z + 7) - (- x2 - 3z)
= 5x2 - y + z + 7 + x2 + 3z
= 5x2+ x2 - y + z + 3z + 7
= 6x2 - y + 4z + 7
(iii) Required expression = (y3 - 3xy2 - 4x2y) - (x3 + 2x2y + 6xy2 - y3)
= y3 - 3xy2 - 4x2y - x3 - 2x2y - 6xy2 + y3
= y3 + y3 - 3xy2- 6xy2 - 4x2y - 2x2y - x3
= 2y3- 9xy2 - 6x2y - x3
Question 13:
From
(i) p3 − 4 + 3p2, take away 5p2 − 3p3 + p − 6
(ii) 7 + x − x2, take away 9 + x + 3x2 + 7x3
(iii) 1 − 5y2, take away y3 + 7y2 + y + 1
(iv) x3 − 5x2 + 3x + 1, take away 6x2 − 4x3 + 5 + 3x
Answer 13:
(i) Required expression = (p3 - 4 + 3p2) - (5p2 - 3p3 + p - 6)
= p3 - 4 + 3p2 - 5p2 + 3p3 - p + 6
= p3 + 3p3 + 3p2 - 5p2- p - 4+ 6
= 4p3 - 2p2 - p + 2
(ii) Required expression = (7 + x - x2) - (9 + x + 3x2 + 7x3)
= 7 + x - x2 - 9 - x - 3x2 - 7x3
= - 7x3- x2 - 3x2 + 7 - 9
= - 7x3 - 4x2 - 2
(iii) Required expression = (1 - 5y2) - (y3+ 7y2 + y + 1)
= 1 - 5y2 - y3 - 7y2 - y - 1
= - y3- 5y2 - 7y2 - y
= - y3- 12y2 - y
(iv) Required expression = (x3 - 5x2 + 3x + 1) - (6x2 - 4x3 + 5 +3x)
= x3 - 5x2 + 3x + 1 - 6x2 + 4x3 - 5 - 3x
= x3 + 4x3 - 5x2 - 6x2 + 1 - 5
= 5x3 - 11x2 - 4
Question 14:
From the sum of 3x2 − 5x + 2 and −5x2 − 8x + 9 subtract 4x2 − 7x + 9.
Answer 14:
Required expression = {(3x2 - 5x + 2) + (- 5x2 - 8x + 9)} - (4x2 - 7x + 9)
= {3x2 - 5x + 2 - 5x2 - 8x + 9} - (4x2 - 7x + 9)
= {3x2 - 5x2 - 5x - 8x + 2 + 9} - (4x2 - 7x + 9)
= {- 2x2 - 13x +11} - (4x2 - 7x + 9)
= - 2x2 - 13x + 11 - 4x2 + 7x - 9
= - 2x2 - 4x2 - 13x + 7x + 11 - 9
= - 6x2 - 6x + 2
Question 15:
Subtract the sum of 13x − 4y + 7z and −6z + 6x + 3y from the sum of 6x − 4y − 4z and 2x + 4y − 7.
Answer 15:
Sum of (13x - 4y + 7z) and ( - 6z + 6x + 3y)
= {(13x - 4y + 7z) + (- 6z + 6x + 3y)
={13x - 4y + 7z - 6z + 6x + 3y}
= {13x + 6x - 4y + 3y + 7z - 6z}
= 19x - y + z
Sum of (6x − 4y − 4z) and (2x + 4y − 7)
= (6x − 4y − 4z) + (2x + 4y − 7)
= 6x − 4y − 4z + 2x + 4y − 7
= 8x - 4z - 7
Now, required expression = {(8x - 4z - 7) - (19x - y + z)}
= 8x - 4z - 7 - 19x + y - z
= 8x - 19x + y - 4z - z - 7
= - 11x + y - 5z - 7
Question 16:
From the sum of x2 + 3y2 − 6xy, 2x2 − y2 + 8xy, y2 + 8 and x2 − 3xy subtract −3x2 + 4y2 − xy + x − y + 3.
Answer 16:
Sum of (x2 + 3y2 - 6xy), (2x2 - y2 + 8xy), (y2 + 8) and (x2 - 3xy)
={(x2 + 3y2 - 6xy) + (2x2 - y2 + 8xy) + ( y2 + 8) + (x2 - 3xy)}
={x2 + 3y2 - 6xy + 2x2 - y2 + 8xy + y2 + 8 + x2 - 3xy}
= {x2+ 2x2+ x2 + 3y2- y2 + y2- 6xy + 8xy - 3xy + 8}
= 4x2 + 3y2 - xy + 8
Now, required expression = (4x2 + 3y2 - xy + 8) - (- 3x2 + 4y2 - xy + x - y + 3)
= 4x2 + 3y2 - xy + 8 + 3x2 - 4y2 + xy - x + y - 3
= 4x2 + 3x2+ 3y2- 4y2- x + y - 3 + 8
= 7x2 - y2- x + y + 5
Question 17:
What should be added to xy − 3yz + 4zx to get 4xy − 3zx + 4yz + 7?
Answer 17:
The required expression can be got by subtracting xy - 3yz + 4zx from 4xy - 3zx + 4yz + 7.
Therefore, required expression = (4xy - 3zx + 4yz + 7) - (xy - 3yz + 4zx)
= 4xy - 3zx + 4yz + 7 - xy + 3yz - 4zx
= 4xy - xy - 3zx - 4zx + 4yz + 3yz + 7
= 3xy - 7zx + 7yz + 7
Question 18:
What should be subtracted from x2 − xy + y2 −x + y + 3 to obtain −x2 + 3y2 − 4xy + 1?
Answer 18:
Let 'M' be the required expression. Then, we have
x2 - xy + y2 - x + y + 3 - M = - x2 + 3y2 - 4xy + 1
Therefore,
M = (x2 - xy + y2 - x + y + 3) - (- x2 + 3y2 - 4xy + 1)
= x2 - xy + y2 - x + y + 3 + x2 - 3y2 + 4xy - 1
Collecting positive and negative like terms together, we get
x2 + x2- xy + 4xy + y2- 3y2 - x + y + 3 - 1
= 2x2 + 3xy- 2y2- x + y + 2
Question 19:
How much is x − 2y + 3z greater than 3x + 5y − 7?
Answer 19:
Required expression = (x - 2y + 3z) - (3x + 5y - 7)
= x - 2y + 3z - 3x - 5y + 7
Collecting positive and negative like terms together, we get
x - 3x - 2y - 5y + 3z + 7
= - 2x - 7y + 3z + 7
Question 20:
How much is x2 − 2xy + 3y2 less than 2x2 − 3y2 + xy?
Answer 20:
Required expression = (2x2 - 3y2 + xy) - (x2 - 2xy + 3y2)
= 2x2 - 3y2 + xy - x2 + 2xy - 3y2
Collecting positive and negative like terms together, we get
2x2 - x2 - 3y2 - 3y2 + xy + 2xy
= x2 - 6y2 + 3xy
Question 21:
How much does a2 − 3ab + 2b2 exceed 2a2 − 7ab + 9b2?
Answer 21:
Required expression = (a2 - 3ab + 2b2) - (2a2 - 7ab + 9b2)
= a2 - 3ab + 2b2 - 2a2 + 7ab - 9b2
Collecting positive and negative like terms together, we get
= a2 - 2a2 - 3ab + 7ab + 2b2 - 9b2
= - a2 + 4ab - 7b2
Question 22:
What must be added to 12x3 − 4x2 + 3x − 7 to make the sum x3 + 2x2 − 3x + 2?
Answer 22:
Let 'M' be the required expression. Thus, we have
12x3 - 4x2 + 3x - 7 + M = x3 + 2x2 - 3x + 2
Therefore,
M = (x3 + 2x2 - 3x + 2) - (12x3 - 4x2 + 3x - 7)
= x3 + 2x2 - 3x + 2 - 12x3 + 4x2 - 3x + 7
Collecting positive and negative like terms together, we get
x3- 12x3 + 2x2 + 4x2 - 3x - 3x + 2 + 7
= - 11x3 + 6x2 - 6x + 9
Question 23:
If P = 7x2 + 5xy − 9y2, Q = 4y2 − 3x2 − 6xy and R = −4x2 + xy + 5y2, show that P + Q + R = 0.
Answer 23:
We have
P + Q + R = (7x2 + 5xy - 9y2) + (4y2 - 3x2 - 6xy) + (- 4x2 + xy + 5y2)
= 7x2 + 5xy - 9y2 + 4y2 - 3x2 - 6xy - 4x2 + xy + 5y2
Collecting positive and negative like terms together, we get
7x2- 3x2 - 4x2 + 5xy - 6xy + xy - 9y2 + 4y2 + 5y2
= 7x2- 7x2 + 6xy - 6xy - 9y2 + 9y2
= 0
Question 24:
If P = a2 − b2 + 2ab, Q = a2 + 4b2 − 6ab, R = b2 + b, S = a2 − 4ab and T = −2a2 + b2 − ab + a. Find P + Q + R + S − T.
Answer 24:
We have
P + Q + R + S - T = {(a2 - b2 + 2ab) + (a2 + 4b2 - 6ab) + (b2 + b) + (a2 - 4ab)} - (-2a2 + b2 - ab + a)
= {a2 - b2 + 2ab + a2 + 4b2 - 6ab + b2 + b + a2 - 4ab}- (- 2a2 + b2 - ab + a)
= {3a2 + 4b2 - 8ab + b } - (-2a2 + b2 - ab + a)
= 3a2+ 4b2 - 8ab + b + 2a2 - b2 + ab - a
Collecting positive and negative like terms together, we get
3a2 + 2a2 + 4b2 - b2 - 8ab + ab - a + b
= 5a2 + 3b2- 7ab - a + b
No comments:
Post a Comment