RD Sharma solution class 7 chapter 7 Algebraic Expression Exercise 7.2

Exercise 7.2

Page-7.13

Question 1:

Add the following:
(i) 3x and 7x
(ii) −5xy and 9xy

Answer 1:

We have
(i) 3x + 7x = (3 + 7)x = 10x
(ii) -5xy + 9xy = ( -5 + 9)xy = 4xy

Question 2:

Simplify each of the following:
(i) 7x3y + 9yx3
(ii) 12a2b + 3ba2

Answer 2:

Simplifying the given expressions, we have
(i) 7x3y + 9yx3 = (7 + 9)x3y = 16x3y
(ii) 12a2b + 3ba2 = (12 + 3)a2b = 15a2b

Question 3:

Add the following:
(i) 7abc, −5abc, 9abc, −8abc
(ii) 2x2y, − 4x2y, 6x2y, −5x2y

Answer 3:

Adding the given terms, we have
(i) 7abc + (- 5abc) + (9 abc) + (- 8abc)
    = 7abc - 5abc + 9abc - 8abc
    = (7 - 5 + 9 - 8)abc
    = (16 - 13)abc
    = 3abc

(ii) 2x2y + (- 4x2y) + 6x2y + (- 5x2y)
    = 2x2y - 4x2y + 6x2y - 5x2y
    = (2 - 4 + 6 - 5)x2y
    = (8 - 9)x2y
    = -x2y

Page-7.14

Question 4:

Add the following expressions:
(i) x3-2x2y+3xy2-y3, 2x3-5xy2+3x2y-4y3
(ii) a4-2a3b+3ab3+4a2b2+3b4,-2a4-5ab3+7a3b-6a2b2+b4

Answer 4:

Adding the given expressions, we have
(i) x3- 2x2y + 3xy2- y3+ 2x3- 5xy2 + 3x2y- 4y3
     Collecting positive and negative like terms together, we get
     x3+ 2x3- 2x2y + 3x2y + 3xy2- 5xy2 - y3 - 4y3
   = 3x3 + x2y - 2xy2 - 5y3

(ii) (a4- 2a3b + 3ab3 + 4a2b2 + 3b4) + (-2a4- 5ab3 + 7a3b - 6a2b2 + b4)
      a4- 2a3b + 3ab3 + 4a2b2 + 3b4 - 2a4- 5ab3 + 7a3b - 6a2b2 + b4
      Collecting positive and negative like terms together, we get
     a4 - 2a4 - 2a3b + 7a3b + 3ab3 - 5ab3 + 4a2b2 - 6a2b2 + 3b4 + b4
    = - a4 + 5a3b - 2ab3 -  2a2b2 + 4b4

Question 5:

Add the following expressions:
(i) 8a-6ab+5b, -6a-ab-8b and -4a+2ab+3b
(ii) 5x3+7+6x-5x2, 2x2-8-9x, 4x-2x2+3x3, 3x3-9x-x2 and x-x2-x3-4

Answer 5:

(i) Required expression = (8a - 6ab + 5b) + (- 6a - ab - 8b) + ( - 4a + 2ab + 3b)
     Collecting positive and negative like terms together, we get
     8a - 6a - 4a - 6ab - ab + 2ab + 5b - 8b + 3b
     = 8a - 10a - 7ab + 2ab + 8b - 8b
     = - 2a - 5ab

(ii) Required expression = (5x3 + 7 + 6x - 5x2) + (2x2 - 8 - 9x) + (4x - 2x2 + 3x3) + (3x3- 9x - x2) + ( x - x2 - x3- 4)
      Collecting positive and negative like terms together, we get
      5x3+ 3x3 + 3x3- x3- 5x2 + 2x2 - 2x2 - x2- x2 + 6x - 9x + 4x - 9x + x + 7 - 8 - 4
    = 11x3 - x3 - 7x2 + 11x - 18x + 7 - 12
    = 10x3 - 7x2 - 7x - 5

Question 6:

Add the following:
(i) x-3y-2z5x+7y-8z3x-2y+5z
(ii) 4ab-5bc+7ca-3ab+2bc-3ca5ab-3bc+4ca

Answer 6:

(i)  Required expression = (x - 3y - 2z) + (5x +7y - 8z) +(3x - 2y + 5z)
     Collecting positive and negative like terms together, we get
     x + 5x + 3x - 3y + 7y - 2y - 2z - 8z + 5z
  = 9x - 5y + 7y - 10z + 5z
  = 9x + 2y - 5z

(ii) Required expression = (4ab - 5bc + 7ca) + (- 3ab + 2bc - 3ca ) + (5ab - 3bc + 4ca)
      Collecting positive and negative like terms together, we get
      4ab - 3ab + 5ab - 5bc + 2bc - 3bc + 7ca - 3ca + 4ca
   = 9ab - 3ab - 8bc + 2bc + 11 ca  - 3ca
   = 6ab - 6bc + 8ca

Question 7:

Add 2x2 − 3x + 1 to the sum of 3x2 − 2x and 3x + 7.

Answer 7:

 Sum of 3x2 - 2x and 3x + 7
= (3x2 - 2x) + ( 3x +7)
= 3x2 - 2x + 3x + 7
= (3x2 + x  + 7)
Now, required expression = (2x2 - 3x + 1) + (3x2 + x  + 7)
                                            = 2x2 + 3x2 - 3x + x + 1 + 7
                                            = 5x2 - 2x + 8

Question 8:

Add x2 + 2xy + y2 to the sum of x2 − 3y2 and 2x2 − y2+ 9.

Answer 8:

Sum of x2 - 3y2 and 2x2 - y2 + 9
= (x2 - 3y2) + (2x2 - y2 + 9)
= x2 + 2x2 - 3y2 - y2+ 9
= 3x2 - 4y2 + 9

Now, required expression = (x2 + 2xy + y2) + (3x2 - 4y2 + 9)
                                       = x2 + 3x2 + 2xy + y2 - 4y2 + 9
                                       = 4x2 + 2xy  - 3y2 + 9

Question 9:

Add a3 + b3 − 3 to the sum of 2a3 − 3b3 − 3ab + 7 and −a3 + b3 + 3ab −9.

Answer 9:

First, we need to find the sum of 2a3 - 3b3 - 3ab + 7 and - a3 + b3 + 3ab - 9.
= (2a3 - 3b3 - 3ab + 7) + (- a3 + b3 + 3ab - 9)
Collecting positive and negative like terms together, we get
= 2a3 - a3- 3b3 + b3 - 3ab + 3ab + 7 - 9
= a3 - 2b3 - 2

Now, the required expression = (a3 + b3 - 3) + (a3 - 2b3 - 2).
                                  = a3 + a3 + b3- 2b3 - 3 - 2
                                  = 2a3 - b3 - 5

Question 10:

Subtract:
(i) 7a2b from 3a2b
(ii) 4xy from −3xy

Answer 10:

(i) Required expression  =  3a2b - 7a2b
                                        = (3 - 7)a2b
                                        = - 4a2b

(ii) Required expression  = - 3 xy - 4xy
                                         = - 7xy
                                      

Question 11:

Subtract:
(i) −4x from 3y
(ii) −2x from −5y

Answer 11:

(i) Required expression = (3y) - (-4x)
                                       = 3y + 4x

(ii) Required expression = (-5y) - (-2x)
                                        = -5y + 2x

Question 12:

Subtract:
(i) 6x3-7x2+5x-3 from 4-5x+6x2-8x3
(ii) -x2-3z from 5x2-y+z+7
(iii) x3+2x2y+6xy2-y3 from y3-3xy2-4x2y

Answer 12:

(i) Required expression = (4 - 5x + 6x2 - 8x3) - (6x3 - 7x2 + 5x - 3)
                                      = 4 - 5x + 6x2 - 8x3 - 6x3 + 7x2 - 5x + 3
                                      = - 8x3- 6x3 + 7x2 + 6x2- 5x - 5x + 3 + 4
                                      = - 14x3 + 13x2 - 10x +7

(ii) Required expression  = (5x2 - y + z + 7) - (- x2 - 3z)
                                        = 5x2 - y + z + 7 + x2 + 3z
                                        = 5x2+ x2 - y + z + 3z + 7
                                        = 6x2 - y + 4z + 7

(iii) Required expression = (y3 - 3xy2 - 4x2y) - (x3 + 2x2y + 6xy2 - y3)
                                         = y3 - 3xy2 - 4x2y - x3 - 2x2y - 6xy2 + y3
                                         = y3 + y3 - 3xy2- 6xy2 - 4x2y - 2x2y - x3
                                         = 2y3- 9xy2 - 6x2y - x3

Question 13:

From
(i) p3 − 4 + 3p2, take away 5p2 − 3p3 + p − 6
(ii) 7 + xx2, take away 9 + x + 3x2 + 7x3
(iii) 1 − 5y2, take away y3 + 7y2 + y + 1
(iv) x3 − 5x2 + 3x + 1, take away 6x2 − 4x3 + 5 + 3x

Answer 13:

 (i) Required expression = (p3 - 4 + 3p2) - (5p2 - 3p3 + p - 6)
                                        = p3 - 4 + 3p2 - 5p2 + 3p3 - p + 6
                                        = p3 + 3p3 + 3p2 - 5p2- p - 4+ 6
                                        = 4p3 - 2p2 - p + 2

(ii) Required expression = (7 + x - x2) - (9 + x + 3x2 + 7x3)
                                        = 7 + x - x2 - 9 - x - 3x2 - 7x3
                                        = - 7x3- x2 - 3x2 + 7 - 9
                                        = - 7x3 - 4x2 - 2

(iii) Required expression = (1 - 5y2) - (y3+ 7y2 + y + 1)
                                         = 1 - 5y2 - y3 - 7y2 - y - 1
                                         = - y3- 5y2 - 7y2 - y
                                         = - y3- 12y2 - y

(iv) Required expression = (x3 - 5x2 + 3x + 1) - (6x2 - 4x3 + 5 +3x)
                                         = x3 - 5x2 + 3x + 1 - 6x2 + 4x3 - 5 - 3x
                                         = x3 + 4x3 - 5x2 - 6x2 + 1 - 5
                                         = 5x3 - 11x2 - 4

Question 14:

From the sum of 3x2 − 5x + 2 and −5x2 − 8x + 9 subtract 4x2 − 7x + 9.

Answer 14:

Required expression = {(3x2 - 5x + 2) + (- 5x2 - 8x + 9)} - (4x2 - 7x + 9)
                                  = {3x2 - 5x + 2 - 5x2 - 8x + 9} -  (4x2 - 7x + 9)
                                  = {3x2 - 5x2 - 5x - 8x + 2 + 9} -  (4x2 - 7x + 9)
                                  = {- 2x2 - 13x +11} - (4x2 - 7x + 9)
                                  = - 2x2 - 13x + 11 - 4x2 + 7x - 9
                                  = - 2x2 - 4x2 - 13x + 7x + 11 - 9
                                  = - 6x2 - 6x + 2

Question 15:

Subtract the sum of 13x − 4y + 7z and −6z + 6x + 3y from the sum of 6x − 4y − 4z and 2x + 4y − 7.

Answer 15:

Sum of (13x - 4y + 7z) and ( - 6z + 6x + 3y)
= {(13x - 4y + 7z) + (- 6z + 6x + 3y)
={13x - 4y + 7z - 6z + 6x + 3y}
= {13x + 6x - 4y + 3y + 7z - 6z}
= 19x - y + z

Sum of (6x − 4y − 4z) and (2x + 4y − 7)
= (6x − 4y − 4z) + (2x + 4y − 7)
= 6x − 4y − 4z + 2x + 4y − 7
= 8x - 4z - 7

Now, required expression = {(8x - 4z - 7) - (19x - y + z)}
                                  = 8x - 4z - 7 - 19x + y - z
                                  = 8x - 19x + y - 4z - z - 7
                                  = - 11x + y - 5z - 7

Question 16:

From the sum of x2 + 3y2 − 6xy, 2x2y2 + 8xy, y2 + 8 and x2 − 3xy subtract −3x2 + 4y2xy + xy + 3.

Answer 16:

Sum of (x2 + 3y2 - 6xy), (2x2 - y2 + 8xy), (y2 + 8) and (x2 - 3xy)
={(x2 + 3y2 - 6xy) + (2x2 - y2 + 8xy) + ( y2 + 8) + (x2 - 3xy)}
={x2 + 3y2 - 6xy + 2x2 - y2 + 8xy + y2 + 8 + x2 - 3xy}
= {x2+ 2x2+ x2 + 3y2- y2 + y2- 6xy + 8xy - 3xy + 8}
= 4x2 + 3y2 - xy + 8

Now, required expression = (4x2 + 3y2 - xy + 8) - (- 3x2 + 4y2 - xy + x - y + 3)
                                  = 4x2 + 3y2 - xy + 8 + 3x2 - 4y2 + xy - x + y - 3
                                  = 4x2 + 3x2+ 3y2- 4y2- x + y - 3 + 8
                                  = 7x2 - y2- x + y + 5

Question 17:

What should be added to xy − 3yz + 4zx to get 4xy − 3zx + 4yz + 7?

Answer 17:

The required expression can be got by subtracting xy - 3yz + 4zx from 4xy - 3zx + 4yz + 7.
Therefore, required expression = (4xy - 3zx + 4yz + 7) - (xy - 3yz + 4zx)
                                  = 4xy - 3zx + 4yz + 7 - xy + 3yz - 4zx
                                  = 4xy - xy - 3zx - 4zx + 4yz + 3yz + 7
                                  = 3xy - 7zx + 7yz + 7

Question 18:

What should be subtracted from x2 xy + y2x + y + 3 to obtain −x2 + 3y2 − 4xy + 1?

Answer 18:

Let 'M' be the required expression. Then, we have
x2 - xy + y2 - x + y + 3 - M = - x2 + 3y2 - 4xy + 1
Therefore,
M = (x2 - xy + y2 - x + y + 3) - (- x2 + 3y2 - 4xy + 1)
    = x2 - xy + y2 - x + y + 3 + x2 - 3y2 + 4xy - 1
Collecting positive and negative like terms together, we get
x2 + x2- xy + 4xy + y2- 3y2 - x + y + 3 - 1
= 2x2 + 3xy- 2y2- x + y + 2

Question 19:

How much is x − 2y + 3z greater than 3x + 5y − 7?

Answer 19:

Required expression  = (x - 2y + 3z) - (3x + 5y - 7)
                                   =  x - 2y + 3z - 3x - 5y + 7
Collecting positive and negative like terms together, we get
x - 3x - 2y - 5y + 3z + 7
= - 2x - 7y + 3z + 7

Question 20:

How much is x2 − 2xy + 3y2 less than 2x2 − 3y2 + xy?

Answer 20:

Required expression = (2x2 - 3y2 + xy) - (x2 - 2xy + 3y2)
                                  = 2x2 - 3y2 + xy - x2 + 2xy - 3y2
Collecting positive and negative like terms together, we get
2x2 - x2 - 3y2 - 3y2 + xy + 2xy
 = x2 - 6y2 + 3xy

Question 21:

How much does a2 − 3ab + 2b2 exceed 2a2 − 7ab + 9b2?

Answer 21:

Required expression = (a2 - 3ab + 2b2) - (2a2 - 7ab + 9b2)
                                  = a2 - 3ab + 2b2 - 2a2 + 7ab - 9b2
Collecting positive and negative like terms together, we get
                                  =  a2 - 2a2  - 3ab + 7ab  + 2b2 -  9b2   
                                  = - a2 + 4ab - 7b2

Question 22:

What must be added to 12x3 − 4x2 + 3x − 7 to make the sum x3 + 2x2 − 3x + 2?

Answer 22:

Let 'M' be the required expression. Thus, we have
12x3 - 4x2 + 3x - 7 + M = x3 + 2x2 - 3x + 2
Therefore,
M = (x3 + 2x2 - 3x + 2) - (12x3 - 4x2 + 3x - 7)
    =  x3 + 2x2 - 3x + 2 - 12x3 + 4x2 - 3x + 7
Collecting positive and negative like terms together, we get
x3- 12x3 + 2x2 + 4x2 - 3x - 3x + 2 + 7
= - 11x3 + 6x2 - 6x + 9

Question 23:

If P = 7x2 + 5xy − 9y2, Q = 4y2 − 3x2 − 6xy and R = −4x2 + xy + 5y2, show that P + Q + R = 0.

Answer 23:

We have
P + Q + R = (7x2 + 5xy - 9y2) + (4y2 - 3x2 - 6xy) + (- 4x2 + xy + 5y2)
                 = 7x2 + 5xy - 9y2 + 4y2 - 3x2 - 6xy - 4x2 + xy + 5y2
Collecting positive and negative like terms together, we get
7x2- 3x2 - 4x2 + 5xy - 6xy + xy - 9y2 + 4y2 + 5y2
= 7x2- 7x+ 6xy - 6xy  - 9y2 + 9y2
= 0

Question 24:

If P = a2 b2 + 2ab, Q = a2 + 4b2 − 6ab, R = b2 + b, S = a2 − 4ab and T = −2a2 + b2ab + a. Find P + Q + R + S − T.

Answer 24:

 We have
P + Q + R + S - T = {(a2 - b2 + 2ab) + (a2 + 4b2 - 6ab) + (b2 + b) + (a2 - 4ab)} - (-2a2 + b2 - ab + a)
                             = {a2 - b2 + 2ab + a2 + 4b2 - 6ab + b2 + b + a2 - 4ab}- (- 2a2 + b2 - ab + a)
                             = {3a2 + 4b2 - 8ab + b } - (-2a2 + b2 - ab + a)
                             = 3a2+ 4b2 - 8ab + b + 2a2 - b2 + ab - a
Collecting positive and negative like terms together, we get
3a2 + 2a2 + 4b2 - b2 - 8ab + ab - a + b
= 5a2 + 3b2- 7ab - a + b

No comments:

Post a Comment

Contact Form

Name

Email *

Message *