RD Sharma solution class 7 chapter 21 Mensuration II Exercise 21.2

Exercise 21.2

Page-21.15

Question 1:

Find the area of a circle whose radius is
(i) 7 cm
(ii) 2.1 m
(iii) 7 km

Answer 1:

(i) We know that the area A of a circle of radius is given by Aπr2.
     Here, r  = 7 cm
A = 227×72 cm2.
A = 227×7×7 cm2 = 22×7 cm2 = 154 cm2.
(ii) ​We know that the area A of a circle of radius r is given by Aπr2.
     Here, r  = 2.1 m
∴ A = 227×2.12 m2.
A = 227×2.1×2.1 m2 = 22×0.3×2.1 m2 = 13.86 m2.
(iii) ​We know that the area A of a circle of radius r is given by A =  πr2.
     Here, r  = 7 km
∴ A = 227×72 km2.
A = 227×7×7 km2 = 22×7 km2 = 154 km2.

Question 2:

Find the area of a circle whose diameter is
(i) 8.4 cm
(ii) 5.6 m
(iii) 7 km

Answer 2:

(i) Let r be the radius of the circle. Then, r = 8.4 ÷ 2 = 4.2 cm.
∴ Area of the circle  = πr2
    A = 227×4.22 cm2A =227×4.2 ×4.2cm2 = 22×0.6×4.2 cm2 = 55.44 cm2..

(ii) Let r be the radius of the circle. Then, r = 5.6 ÷ 2 = 2.8 m.
 Area of the circle  = πr2
    A = 227×2.82 m2A =227×2.8 ×2.8 m2 = 22×0.4×2.8 m2 = 24.64 m2.
(iii) ​​Let r be the radius of the circle. Then, r = ÷ 2 = 3.5 km.
     Area of the circle  = πr2
    A = 227×3.52 km2A =227×3.5 ×3.5 km2 = 22×0.5×3.5 km2 = 38.5 km2.

Question 3:

The area of a circle is 154 cm2. Find the radius of the circle.

Answer 3:

Let the radius of the circle be r cm. 
Area of the circle (A) = 154 cm2
    154 = 227×r2 cm2r2 =154×722  r2 =107822  r2 =49 r =7 cm.

Hence, the radius of the circle is 7 cm.

Question 4:

Find the radius of a circle, if its area is
(i) 4 π cm2
(ii) 55.44 m2
(iii) 1.54 km2

Answer 4:

(i) ​Let the radius of the circle be r cm. 

∴ Area of the circle (A) = 4π cm2
    4π = π×r2 cm2r2 =4ππ  = 4  r =2 cm.

(ii) ​Let the radius of the circle be r cm. 

∴ Area of the circle (A) = 55.44 m2
    55.44 = 227×r2 m2r2 =55.44×722  r2 =5.04×72  r2 =17.64  r =4.2 m

(iii) ​Let the radius of the circle be r cm. 

∴ Area of the circle (A) = 1.54 km2
    1.54 = 227×r2 km2r2 =1.54×722  r2 =10.7822  r2 =0.49  r =0.7 km = 700 m

Question 5:

The circumference of a circle is 3.14 m, find its area.

Answer 5:

We have :

Circumference of the circle = 3.14  ​m = 2πr
 3.14 m =2×227 x r mr=3.14×72×22 m = 12 m.

Area of the circle (A) = πr2 
    A = 227×122 m2A =227×12×12 m2  = 2228 m2 = 0.785 m2.

Question 6:

If the area of a circle is 50.24 m2, find its circumference.

Answer 6:

We have :
Area of the circle (A) = ​πr2 = 50.24 m2
50.24 m2= 227×r2 r2 =50.24×722 m2  = 351.6822 m2 = 15.985 m2r = 3.998 m.


Circumference of circle (C) = 2πr
 C =2×227 x 3.998 mC=44×0.571 m = 25.12 m. 

Question 7:

A horse is tied to a pole with 28 m long string. Find the area where the horse can graze. (Take π = 22/7).

Answer 7:

We have :
Length of the string = ​28 m
The area over which the horse can graze is the same as the area of a circle of radius 28 m.
Hence, required area = π​r2227×28×28m2 = 22×4×28×m2 = 2464 m2.

Question 8:

A steel wire when bent in the form of a square encloses an area of 121 cm2. If the same wire is bent in the form of a circle, find the area of the circle.

Answer 8:

We have :
Area of the square = 121 cm2 
⇒ (side)2 = (11)2 cm2 
⇒ side =  11 cm.
So, the perimeter of the square = 4(side) = (4 x 11) cm = 44 cm.

Let r be the radius of the circle. Then,
Circumference of the circle = Perimeter of the square
  ⇒     2πr =  44
  ⇒     2 x 227x r =  44
 ⇒ r = 7 cm.
∴ Area of the circle = π​r2  = 227×7×7 = 22×7 = 154 cm2 .

Question 9:

A road which is 7 m wide surrounds a circular park whose circumference is 352 m. Find the area of of road.

Answer 9:

We have :
Circumference of the circular park = 2πr = 352 m
  ​  ⇒     2 x 227r =  352
   ⇒ r = 56 m.
Radius of the path including the 7m wide road = (r +7) =  56 +7 = 63 m.
∴ Area of the road :
 =π632 - π562 m2=π632 - 562 m2=π63 +5663 - 56 m2=π1197=227×119×7 m2 = 22×119 m2 = 2618 m2.

 

Question 10:

Prove that the area of a circular path of uniform width h surrounding a circular region of radius r is π h (2r + h).

Answer 10:

Radius  of the circular region = r
​Radius of the circular path of uniform width h surrounding the circular region of radius r = (rh).
​∴ Area of the path
 =πr+h2-πr2=πr+h2-r2=πr2 + 2rh +h2 -r2=π2rh+h2=πh2r+h

Page-21.16

Question 11:

The perimeter of a circle is 4πr cm. What is the area of the circle?

Answer 11:

We have :
    Given perimeter of the circle = 4πr cm = 2​π (2r) cm

    We know that, the perimeter of a circle = 2πr

    ∴ Radius of the circle = 2r cm
    Area of the circle= πr2   = ​π (2r)2 = 4​πr2 .

Question 12:

A wire of 5024 m length is in the form of a square. It is cut and made a circle. Find the ratio of the area of the square to that of the circle.

Answer 12:

We have:
    Perimeter of the square = 5024 m = Circumference of the circle
⇒​ 4 x Side of the square = 5024
∴ Side of the square = 50244 = 1256 m.
Let the area of the square be A1 and the area of the circle be A2.
Area of the square (A1)= side x side =50244 ×50244m2 .
Circumference of the circle = 5024 m
    ⇒ 2 πr = 5024 m

  2×227×r=5024 m  r = 5024×72×22.
 
Area of the circle (A2)= πr2   = ​227×5024×72×22×5024×72×22=5024×5024××72×2×22m2.

 A1:A2= 50244×50244 : 5024×5024××72×2×22 A1A2= 50244×50244 ÷ 5024×5024××72×2×22  A1A2=50244×50244×2×2×225024×5024××7A1A2=1114.A1:A2 = 11:14.
Hence, the ratio of the area of the square to the area of the circle is 11:14.

Question 13:

The radius of a circle is 14 cm. Find the radius of the circle whose area is double of the area of the circle.

Answer 13:

Let the area of the circle whose radius is 14 cm be A1.
Let the radius and area of the circle, whose area is twice the area of the circle A1 , be r2 and A2, respectively.

Thus,
A1πr2 = π142 = 227×14×14 cm2=44×14 cm2= 616 cm2.
A2 = 2 × A1 = 2 × 616 = 1232 cm2
A2 = πr22 = 1232 cm2
 227×r22 = 1232 cm2r22 = 1232×722 = (56×7) cm2r2 = 56×7 = 7×8×7 =7×7×4×2  = 142 cm

Hence, the radius of the circle A2 is 142 cm.

Question 14:

The radius of one circluar field is 20 m and that of another is 48 m. Find the radius of the third circular field whose area is equal to the sum of the areas of two fields.

Answer 14:

Let the area of the circle whose radius is 20 m be A1 , and the area of the circle whose radius
is 48 m be A2. Let A3 be the area of a circle that is equal to the sum of the areas of the two fields, with the radius of its field being r cm.
A3 =  A1 + A2

 A1 =  π202 = 227×20×20 m2=400π m2A2 = π (48)2 = 227×48×48 m2=2304π m2A3 = A1+A2  = 400π +2304π = π400 +2304 m2A3 = πr2 =  π400 +2304 m2r2 = 400 +2304 m2r = 2704 m = 52 m

Question 15:

The radius of one circular field is 5 m and that of the other is 13 m. Find the radius of the circular field whose area is the difference of the areas of first and second field.

Answer 15:

Let the area of the circular field whose radius is 5 m be A1 , and the area of the circular field whose radius is 13 m be A2. Let A3 and r cm be the area and radius of the circular field, that is equal to the difference of the areas of the two fields.
∴ A3 = A2 - A1

 A1 =  π52 = 25π m2A2 = π (13)2 = 169 π m2A3 = A2-A1  = 169π -25 π = 144π m2A3 = πr2 =  144 π m2r2 = 144 m2r = 144 m = 12 m

Hence, the radius of the circular field is 12 m.

Question 16:

Two circles are drawn inside a big circle with diameters 23rd and 13rd of the diameter of the big circle as shown in Fig. 18. Find the area of the shaded portion, if the length of the diameter of the circle is 18 cm.

Answer 16:

Let the left circle be denoted as the 1st circle and the right circle be denoted as the 2nd circle.
Diameter of the big circle = 18 cm
Radius of the big circle = 9 cm
Diameter of the 1st circle = 23×18=12 cm
Radius of the 1st circle = 6 cm
Diameter of the 2nd circle = 13×18=6 cm
Radius of the 2nd circle = 3 cm
Area of the 1st circle = π(6)2=36πcm2
Area of the 2nd circle = π(3)2=π×3×3=9π cm2
Area of the big circle = π(9)2=π×9×9=81π cm2
Area of the shaded portion = Area of the big circle - (Area of the Ist circle + Area of the IInd circle)
Area of the shaded portion = 81π-(36π+9π)=36π cm2.

Question 17:

In Fig. 19, the radius of quarter circular plot taken is 2 m and radius of the flower bed is 2 m. Find the area of the remaining field.

Answer 17:

Radius of the quarter circular plot = 2 m
Area of the quarter circular plot = π(2)2=227×4==12.57 m2
Radius of each flower bed = 2 m
Area of four flower beds = 4×14×π(2)2=12.57 m2
Area of the rectangular region = Length × Breadth
Area of the rectangular region = 8 × 6 = 48 m2
Area of the remaining field = Area of the rectangular region - (Area of the quarter circle + Area of the four flower beds)

Area of the remaining field = [48 - (12.57 + 12.57)] m2 = 22.86 m2 .

Question 18:

Four equal circles, each of radius 5 cm, touch each other as shown in Fig. 20. Find the area included between them. (Take π = 3.14).

Answer 18:

Side of the square = 10 cm
Area of the square = Side × Side
Area of the square = 10×10=100 cm2

Area of the four quarter circles = 4×14×227×52=78.57 cm2
Area included in them = Area of the square - Area of the four quarter circles
Area included in them = ( 100 - 78.57 ) cm2 = 21.43 cm2 .

Question 19:

The area of circle is 100 times the area of another circle. What is the ratio of their circumferences?

Answer 19:

Let the area of the first circle be A1, the circumference be  C1 and the radius be r1.
Let the area of the second circle be A2 , the circumference be C2  and the radius be r2.

Thus,

    C1: C2=2πr1 : 2πr2C1C2 = 2πr12πr2 = r1r2

We know that :
         
   A1 =  100A2
∴ πr12 = 100×πr22 r12 = 100 ×r22r1 = 10 ×r2r1r2= 10

 Substituting the values, we get:
∴​ C1C2=r1r2 = 101C1:C2 =10:1 

Hence, the ratio of their circumferences is 10:1.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *