Objective Type Questions
Question 1:
(a) 22
(b) 18
(c) 20
(d) 30
Answer 1:
⇒ 2x + 3x − 5 + 4x − 13 = 180°
⇒ 9x − 18 = 180
⇒ 9x = 198
⇒ x = 22
Hence, the correct answer is option (a).
In Fig. 59, the value of x is
(a) 84
(b) 74
(c) 94
(d) 57
∠CAD = ∠ABC + ∠ACB [Exterior angle property]
⇒ 123° = 39° + x°
⇒ 84° = x°
⇒ x = 84
Hence, the correct answer is option (a).
In Fig. 60, the values of x and y are
(a) x = 20, y = 130
(c) x = 20, y = 140
(b) x = 40, y = 140
(d) x = 15, y = 140
∠ACB + ∠ACD = 180°
⇒ 40° + y° = 180°
⇒ y° = 140°
⇒ y = 140
Now, ∠ACD = ∠ABC + ∠BAC [Exterior angle property]
⇒ 3x° + 4x° = y°
⇒ 7x° = 140°
⇒ x = 20
Hence, the correct answer is option (c).
In Fig. 61, the value of xis
(a) 72
(b) 50
(c) 58
(d) 48
∠A + ∠B + ∠C = 180° [Angle sum property of triangle]
⇒ 50° + 72° + ∠C = 180°
⇒ ∠C + 122° = 180°
⇒ ∠C = 58°
Now, x° = ∠C [Vertically opposite angles]
⇒ x° = 58°
⇒ x = 58
Hence, the correct answer is option (c).
In Fig. 62, if AB || DE, then the value of x is
(a) 25
(b) 35
(c) 40
(d) 45
∠ACD + ∠ACB = 180° [Linear angles]
⇒ 91° + ∠ACB = 180°
⇒ ∠ACB = 89°
Since, AB || DE
∠DEC = ∠CAB = 46° [Alternate angles]
Now,
∠ACB + ∠CAB + ∠ABC = 180° [Angle sum property of triangle]
⇒ 89° + 46° + x° = 180°
⇒ x° = 45°
⇒ x = 45
Hence, the correct answer is option (d).
In Fig. 63, if AB || CD, the value of x is
(a) 25
(b) 35
(c) 15
(d) 20
Since, AB || DE
∠DCB = ∠CBA = 3x° [Alternate angles]
Now,
∠ACB + ∠CAB + ∠CBA = 180° [Angle sum property of triangle]
⇒ 55° + 2x° + 3x° = 180°
⇒ 5x° = 125°
⇒ x = 25
Hence, the correct answer is option (a).
In Fig. 64, if AB || CD, the values of x and y are
(a) x = 21, y = 28
(b) x = 21, y = 38
(c) x = 38, y = 21
(d) x = 22, y = 38
∠AEC + ∠AEB = 180° [Linear angles]
⇒ 79° + ∠AEB = 180°
⇒ ∠AEB = 101°
Since, AB || CD
∠ABE = ∠ECD = 58° [Alternate angles]
Now, In △AEB
∠AEB + ∠EAB + ∠ABE = 180° [Angle sum property of triangle]
⇒ 101° + 58° + x° = 180°
⇒ x° = 21°
⇒ x = 21
Now, In △AEB
∠AEC + ∠CAE + ∠CEA = 180° [Angle sum property of triangle]
⇒ 79° + y° + 3x° = 180°
⇒ 79° + y° + 3(21)° = 180°
⇒ 79° + y° + 63° = 180°
⇒ y° = 38°
⇒ y = 38
Hence, the correct answer is option (b).
In Fig. 65, if AB || CE, then the values of x and y are
(a) x = 26, y = 144
(b) x = 36, y = 154
(c) x = 154, y = 36
(d) x = 144, y = 26
∠DCA + ∠ACB = 180° [Linear angles]
⇒ 134° + ∠ACB = 180°
⇒ ∠ACB = 46°
Now, In △ABC
∠BAC + ∠ACB+ ∠ABC = 180° [Angle sum property of triangle]
⇒ 62° + 46° + 2x° = 180°
⇒ 2x° = 72°
⇒ x = 36
Since, AB || CE
∴ ∠ECB = ∠CBA= (2x)° = (2 × 36)° = 72° [Alternate angles]
Now, ∠DCE + ∠ECB = 180° [Linear angles]
⇒ y° + 72° = 180°
⇒ y = 108
Disclaimer: No Option is correct
In Fig. 66, if AF || DE, then x =
(a) 37
(b) 57
(c) 47
(d) 67
Since, AF || DE
∠EDC = ∠ACB = 109° [Corresponding angles]
Now, In △ABC
∠ACB + ∠CAB + ∠CBA = 180° [Angle sum property of triangle]
⇒ 109° + 24° + x° = 180°
⇒ x° = 47°
⇒ x = 47
Hence, the correct answer is option (c).
In Fig. 67, the values of x and y are
(a) x = 130, y = 120
(b) x = 120, y = 130
(c) x = 120, y = 120
(d) x = 130, y = 130
In △ABD
∠ADB + ∠BAD + ∠ABD = 180° [Angle sum property of triangle]
⇒ 61° + 59° + ∠ABD = 180°
⇒ ∠ABD = 60°
∠ABD + ∠DBC = 180° [Linear pair angles]
⇒ 60° + y° = 180°
⇒ y = 120
Now, ∠ADB = ∠GDE = 61° [Vertically opposite angles]
Now, In △GDE
∠GDE + ∠DGE + ∠GED = 180° [Angle sum property of triangle]
⇒ 61° + 69° + ∠GED = 180°
⇒ ∠GED = 50°
Now, ∠GED + ∠GEF = 180° [Linear pair angles]
⇒ 50° + x° = 180°
⇒ x = 130
Hence, the correct answer is option (a).
In Fig. 68, the values of x and y are
(a) x = 120, y = 150
(b) x = 110, y = 160
(c) x = 150, y = 120
(d) x = 110, y = 160
In △DEF
∠DEF + ∠DFE + ∠EDF = 180° [Angle sum property of triangle]
⇒ 110° + 40° + ∠EDF = 180°
⇒ ∠EDF = 30°
Now, ∠EDF + ∠FDA = 180° [Linear pair angles]
⇒ 30° + x° = 180°
⇒ x = 150
Now, ∠EDF = ∠ADB = 30° [Vertically opposite angles]
Now, In △ABD
∠ADB + ∠DAB + ∠ABD = 180° [Angle sum property of triangle]
⇒ 30° + 90° + ∠ABD = 180°
⇒ ∠ABD = 60°
Now, ∠ABD + ∠DBC = 180° [Linear pair angles]
⇒ 60° + y° = 180°
⇒ y = 120
Hence, the correct answer is option (c).
In Fig. 69, if AB || CD, then the values of x and y are
(a) x = 106, y = 307
(b) x = 307, y = 106
(C) x =107, y = 306
(d) x = 105, y = 308
In △CDE
∠CDE + ∠CED + ∠ECD = 180° [Angle sum property of triangle]
⇒ 53° + 53° + ∠ECD = 180°
⇒ ∠ECD = 74°
Since, AB || CD
∴ ∠ECD = ∠CGB = 74° [Corresponding angles]
Now, ∠CGB + ∠BGF = 180° [Linear pair angles]
⇒ 74° + x° = 180°
⇒ x = 106
Now, In △EGB
∠EGB + ∠BEG + ∠EBG = 180° [Angle sum property of triangle]
⇒ 74° + 53° + ∠EBG = 180°
⇒ ∠EBG = 53°
Now, ∠EBG + Reflex∠EBG = 360° [Complete angle]
⇒ 53° + y° = 360°
⇒ y = 307
Hence, the correct answer is option (a).
In Fig. 70, if AB || CD, then the values of x and y are
(a) x = 24, y = 48
(b) x = 34, y = 68
(c) x = 24, y = 68
(d) x = 34, y = 48
∠AGE + ∠BGE = 180° [Linear pair angles]
⇒ 121° + ∠BGE = 180°
⇒ ∠BGE = 59°
Since, AB || CD
∴ ∠BGE = ∠GHD = 59° [Corresponding angles]
⇒ x° + 25° = 59°
⇒ x = 34
In △GHI
∠GHI + ∠GIH + ∠HGI = 180° [Angle sum property of triangle]
⇒ 34° + 78° + y° = 180°
⇒ y = 68
Hence, the correct answer is option (b).
In Fig. 71, if AB || CD, then the values of x, y and z are
(a) x = 56, y = 47, z = 77
(b) x = 47, y = 56, z = 77
(c) x = 77, y = 56, z = 47
(d) x = 56, y = 77, z = 47
∠AFE + ∠EFG = 180° [Linear pair angles]
⇒ 124° + ∠EFG = 180°
⇒ ∠EFG = 56°
Since, AB || CD
∴ ∠EFG = ∠FHK = 56° [Corresponding angles]
⇒ x = 56
Now, ∠QKH + ∠GKH = 180° [Linear pair angles]
⇒ 103° + ∠GKH = 180°
⇒ ∠GKH = 77°
Since, AB || CD
∴ ∠EGF = ∠GKH = 77° [Corresponding angles]
⇒ y = 77
In △EHK
∠EHK + ∠EKH + ∠HEK = 180° [Angle sum property of triangle]
⇒ 56° + 77° + z° = 180°
⇒ z = 47
Hence, the correct answer is option (d).
In Fig. 72, if AB || CD and AE || BD, then the value of x is
(a) 38
(b) 48
(c) 58
(d) 68
In the given figure,
Sum of all the angles of a polygon is given by , where n is the number of sides of the polygon.
The given polygon has number of sides(n) = 5
So, sum of all the angles =
Divide both sides by 3, we get
If the exterior angles of a triangle are (2x + 10)°, (3x − 5)° and (2x + 40)°, then x =
(a) 25
(b) 35
(c) 45
(d) 55
Sum of the exterior angles of a triangle is 360°
∴(2x + 10)°+ (3x − 5)° + (2x + 40)° = 360°
⇒ 2x + 10 + 3x − 5 + 2x + 40 = 360
⇒ 7x + 45 = 360
⇒ 7x = 315
⇒ x = 45
Hence, the correct answer is option (c)
In Fig. 73, the value of x is
(a) 20
(b) 30
(c) 40
(d) 25
∠TRS + ∠TRQ = 180° [Linear angles]
⇒ 5x° + ∠TRQ = 180°
⇒ ∠TRQ = 180° − 5x°
Now, ∠QTR + ∠TRQ = ∠PQT [Exterior angle property of triangle]
⇒ 3x° + 180° − 5x° = 120°
⇒ 2x° = 60°
⇒ x = 30
Hence, the correct answer is option (b).
In Fig. 74, if AB || CO, ∠CAB = 49°, ∠CBD = 27° and∠BDC = 112°, then the values of x and y are
(a) x = 41, y = 90
(b) x = 41,y = 63
(c) x = 63, y = 41
(d) x = 90, y = 41
Since, AB || CD
∠ABD + ∠CDB = 180° [Angles on the same side of a transversal line are supplementary]
⇒ x° + 27° + 112° = 180°
⇒ x° = 41°
⇒ x = 41
Now, In △ABC
∠A + ∠B + ∠C = 180° [Angle sum property of triangle]
⇒ 49° + 41°+ y° = 180°
⇒ y° = 90°
⇒ y = 90
Hence, the correct answer is option (a).
Which of the following is the set of measures of the sides of a triangle?
(a) 8 cm, 4 cm, 20 cm
(b) 9 cm, 17 cm, 25 cm
(c) 11 cm, 16 cm, 28 cm
(d) None of these
We knwno that Triangle Inequality Theorem states that the sum of two side lengths of a triangle is always greater than the third side.
Using this in (a), we get
8 + 4 ≯ 20
⇒ 12 ≯ 20
So, triangle is not possible
Using this in (b), we get
9 + 17 > 25
⇒ 26 > 25
and
9 + 25 > 7
⇒ 34 > 7
and
17 + 25 > 9
⇒ 42 > 9
So, triangle is possible.
Using this in (c), we get
11 + 16 ≯ 28
⇒ 27 ≯ 28
So, triangle is not possible.
Hence, the correct answer is option (b).
In which of the following cases, a right triangle cannot be constructed?
(a) 12 cm, 5 cm, 13 cm
(b) 8 cm, 6 cm, 10 cm
(c) 5 cm, 9 cm, 11 cm
(d) None of these
In (a)
122 + 52 = 132
⇒ 144 + 25 = 169
⇒ 169 = 169
Since, the sum of the square of two smallest side is equal to the square of largest side.
Hence, a right triangle can be constructed.
In (b)
82 + 62 = 102
⇒ 44 + 36 = 100
⇒ 100 = 100
Since, the sum of the square of two smallest side is equal to the square of largest side.
Hence, a right triangle can be constructed.
In (c)
52 + 92 ≠ 112
⇒ 25 + 81 ≠ 121
⇒ 106 ≠ 121
Since, the sum of the square of two smallest side is not equal to the square of largest side.
Hence, a right triangle can not be constructed.
Hence, the correct answer is option (c).
Which of the following is/are not Pythagorean triplet (s)?
(a) 3,4,5
(b) 8,15,17
(c) 7,24,25
(d) 13,26,29
In (a)
32 + 42 = 52
⇒ 9 + 16 = 25
⇒ 25 = 25
Since, the sum of the square of two smallest number is equal to the square of largest number.
Hence, it is a Pythagorean triplet.
In (b)
82 + 152 = 172
⇒ 64 + 225 = 289
⇒ 289 = 289
Since, the sum of the square of two smallest number is equal to the square of largest number.
Hence, it is a Pythagorean triplet.
In (c)
72 + 242 = 252
⇒ 49 + 576 = 625
⇒ 625 = 625
Since, the sum of the square of two smallest number is equal to the square of largest number.
Hence, it is a Pythagorean triplet.
In (d)
132 + 262 ≠ 292
⇒ 169 + 676≠ 841
⇒ 845 ≠ 841
Since, the sum of the square of two smallest number is not equal to the square of largest number.
Hence, it is not a Pythagorean triplet.
Hence, the correct answer is option (d).
In a right triangle, one of the acute angles is four times the other. Its measure is
(a) 68°
(b) 84°
(c) 80°
(d) 72°
Let the smallest angle be x, then the other angle be 4x.
Now,
x + 4x + 90° = 180°
⇒ 5x = 90°
⇒ x = 18°
Thus, the measure of the angles are 18°, and 4(18)° = 72°
Hence, the correct answer is option (d).
In which of the following cases can a right triangle ABC be constructed?
(a) AB = 5 cm, BC = 7 cm, AC = 10 cm
(b) AB = 7 cm, BC = 8 cm, AC = 12 cm
(c) AB = 8 cm, BC = 17 cm, AC = 15 cm
(d) None of these
In (c)
BC2 = AC2 + AB2
⇒ (17)2 = (15)2 + (8)2
⇒ 289 = 225 + 64
⇒ 289 = 289
Since, the sum of the square of two smallest side is equal to the square of largest side.
Hence, ABC is a right angle triangle at A.
Hence, the correct answer is option (c).
△ ABC is a right triangle right angled at A. If AB = 24 cm and AC = 7 cm, then BC =
(a) 31 cm
(b) 17 cm
(c) 25 cm
(d) 28 cm
In right traingle ABC,
BC2 = AC2 + AB2
⇒ BC2 = (7)2 + (24)2
⇒ BC2 = 49 + 576
⇒ BC2 = 625
⇒ BC2 = (25)2
⇒ BC = 25 cm
Hence, the correct answer is option (c).
If △ABC is an isosceles right-triangle right angled at C such that AC = 5 cm. Then, AB =
(a) 2.5cm
(b) cm
(c) 10 cm
(d) 5 cm
Suppose BC is the ladder which is placed againts the wall OA. The foot of the ladder C is 15 m away from the foot O of the wall and its top reaches the window which is 20 m above the ground.
In right traingle ABC,
AB2 = BC2 + AC2
⇒ AB2 = (5)2 + (5)2
⇒ AB2 = 25 + 25
⇒ AB2 = 50
⇒ AB2 =
⇒ AB = cm
Hence, the correct answer is option (b).
Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, the distance between their tops is
(a) 13 m
(b) 14 m
(c) 15 m
(d) 12.8 m
Suppose AB and CD are two poles.The is distance between AB and CD is 12 m.
In right traingle BDE,
BD2 = DE2 + BE2
⇒ BD2 = (5)2 + (12)2
⇒ BD2 = 25 + 144
⇒ BD2 = 169
⇒ BD2 = (13)2
⇒ BD = 13 m
Hence, the correct answer is option (a).
A ladder is placed in such a way that its foot is 15 m away from the wall and its top reaches a window 20 m above the ground. The length of the ladder is
(a) 35 m
(b) 25 m
(c) 18 m
(d) 17.5 m
Suppose BC is the ladder which is placed againts the wall OA. The foot of the ladder C is 15 m away from the foot O of the wall and its top reaches the window which is 20 m above the ground.
In right traingle BOC,
BC2 = OC2 + OB2
⇒ BC2 = (15)2 + (20)2
⇒ BC2 = 225 + 400
⇒ BC2 = 625
⇒ BC2 = (25)2
⇒ BC = 25 m
Hence, the correct answer is option (b).
The hypotenuse of a right triangle is 26 cm long. If one of the remaining two sides is 10 cm long, the length of the other side is
(a) 25 cm
(b) 23 cm
(c) 24 cm
(d) 22 cm
In right traingle BOC,
BC2 = OC2 + OB2
⇒ (26)2 = (10)2 + OB2
⇒ 676 = 100 + OB2
⇒ OB2 = 576
⇒ OB2 = (24)2
⇒ OB = 24 cm
Hence, the correct answer is option (c).
A 15 m long ladder is placed against a wall in such away that the foot of the ladder is 9 m away from the wall. Up to what height does the ladder reach the wall?
(a) 13 m
(b) 10 m
(c) 8 m
(d) 12 m
Suppose BC is the ladder having length 15 m is placed againts the wall OA. The foot of the ladder C is 9 m away from the foot of the wall O.
In right traingle BOC,
BC2 = OC2 + OB2
⇒ (15)2 = (9)2 + OB2
⇒ 225 = 81 + OB2
⇒ OB2 = 144
⇒ OB2 = (12)2
⇒ OB = 12 m
Hence, the correct answer is option (d).
No comments:
Post a Comment