RD Sharma solution class 7 chapter 15 Properties of triangles Exercise 15.3

Exercise 15.3

Page-15.19


Question 1:

In Fig., ∠CBX is an exterior angle of ∆ABC at B. Name

(i) the interior adjacent angle
(ii) the interior opposite angles to exterior ∠CBX.
Also, name the interior opposite angles to an exterior angle at A.

Answer 1:

(i) The interior angle adjacent to exterior CBX is ABC.(ii) The interior angles opposite to exterior CBX are BAC and ACB.Also, the interior angles opposite to exterior BAY are ABC and ACB.
Page-15.20

Question 2:

In Fig, two of the angles are indicated. What are the measures of ∠ACX and ∠ACB?

Answer 2:

InABC, A = 50° and B = 55°.Because of the angle sum property of the triangle, we can say that:A +B +C = 180° 50°+55°+C = 180°Or, C = 75°i.e. ACB =75°ACX = 180°-ACB =180°-75° = 105° (Linear pair)

Question 3:

In a triangle, an exterior angle at a vertex is 95° and its one of the interior opposite angles is 55°. Find all the angles of the triangle.

Answer 3:


We know that the sum of interior opposite angles is equal to the exterior angle.Hence, for the given triangle, we can say that:ABC+BAC=BCO   55°+BAC=95°Or, BAC=95°-55°=BAC=40°We also know that the sum of all angles of a triangle is 180°.Hence, for the given ABC, we can say that:ABC+BAC+BCA=180°  55°+40°+BCA=180°Or,BCA=180°-95°= BCA=85°

Question 4:

One of the exterior angles of a triangle is 80°, and the interior opposite angles are equal to each other. What is the measure of each of these two angles?

Answer 4:

Let us assume that A and B are the two interior opposite angles. We know that A is equal to B.We also know that the sum of interior opposite angles is equal to the exterior angle.Hence, we can say that:A+B=80°  Or,A+A=80°   (A=B)2A=80°A=80°2=40°A=B=40°Thus, each of the required angles is of 40°.

Question 5:

The exterior angles, obtained on producing the base of a triangle both ways are 104° and 136°. Find all the angles of the triangle.

Answer 5:


In the given figure, ABE and ABC form a linear pair.ABE + ABC=180°ABC=180°-136°ABC=44°We can also see that ACD and ACB form a linear pair.ACD + ACB=180°ACB=180°-104°ACB=76°We know that the sum of interior opposite angles is equal to the exterior angle. Therefore, we can say that:BAC+ABC=104°BAC=104°-44=60°Thus,ACB = 76° andBAC= 60°

Question 6:

In Fig., the sides BC, CA and BA of a ∆ABC have been produced to D, E and F respectively. If ∠ACD = 105° and ∠EAF = 45°; find all the angles of the ∆ABC.

Answer 6:

In ABC, BAC and EAF are vertically opposite angles.Hence, we can say that:BAC = EAF = 45° Considering the exterior angle property, we can say that:BAC + ABC = ACD = 105°ABC = 105°-45° = 60°Because of the angle sum property of the triangle, we can say that:ABC +ACB +BAC = 180°ACB = 75°Therefore, the angles are 45°, 60° and 75°.

Question 7:

In Fig., ACCE and ∠A :∠B : ∠C = 3 : 2 : 1, find the value of ∠ECD.

Answer 7:

In the given triangle, the angles are in the ratio 3:2:1.Let the angles of the triangle be 3x, 2x and x.Because of the angle sum property of the triangle, we can say that:3x+2x+x = 180°6x = 180°Or, x = 30°     ...(i)Also, ACB +ACE +ECD = 180°x+ 90°+ECD = 180°  (ACE = 90°)ECD = 60°  [From  (i)]

Question 8:

A student when asked to measure two exterior angles of ∆ABC observed that the exterior angles at A and B are of 103° and 74° respectively. Is this possible? Why or why not?

Answer 8:

Here,Internal angle at A+ External angle at A=180° Internal angle at A+ 103°=180° Internal angle at A=77° Internal angle at B+ External angle at B=180° Internal angle at B+ 74°=180° Internal angle at B=106° Sum of internal angles at A and B=77°+106°=183°It means that the sum of internal angles at A and B is greater than 180°, which cannot be possible.

Question 9:

In Fig., AD and CF are respectively perpendiculars to sides BC and AB of ∆ABC. If ∠FCD = 50°, find ∠BAD.

Answer 9:


We know that the sum of all angles of a triangle is 180°.Therefore, for the given FCB, we can say that:FCB+CBF+BFC=180° 50°+CBF+90°=180°Or,CBF=180°-50°-90°=40°  ...(i)Using the above rule for ABD, we can say that:ABD+BDA+BAD=180°BAD=180°-90°-40°=50°  [From (i)]

Question 10:

In Fig., measures of some angles are indicated. Find the value of x.

Answer 10:


Here,AED+120°=180°    (Linear pair)AED=180°-120°=60°We know that the sum of all angles of a triangle is 180°.Therefore, for ADE, we can say that:ADE+AED+DAE=180° 60°+ADE+30°=180°Or, ADE=180°-60°-30°=90°From the given figure, we can also say that:FDC+90°=180°    (Linear pair) FDC=180°-90°=90°Using the above rule for CDF, we can say that:CDF+DCF+DFC=180°90°+DCF+60°=180°DCF=180°-60°-90°=30°Also,DCF+x=180°    (Linear pair)30°+x=180°Or, x=180°-30°=150°

Page-15.21

Question 11:

In Fig., ABC is a right triangle right angled at A. D lies on BA produced and DEBC, intersecting AC at F. If ∠AFE = 130°, find

(i) ∠BDE
(ii) ∠BCA
(iii) ∠ABC

Answer 11:


(i) Here,BAF+FAD=180° (Linear pair)FAD=180°-BAF=180°-90°=90°Also, AFE=ADF+FAD  (Exterior angle property)ADF+90°=130°   ADF=130°-90°=40°(ii)We know that the sum of all the angles of a triangle is 180°.Therefore, for BDE, we can say that:BDE+BED+DBE=180°.DBE=180°-BDE-BED=180°-90°-40°=50°   ...(i)Also, FAD=ABC+ACB (Exterior angle property) 90°=50°+ACBOr,ACB=90°-50°=40°(iii) ABC =DBE = 50°   [From (i)]

Question 12:

ABC is a triangle in which ∠B = ∠C and ray AX bisects the exterior angle DAC. If ∠DAX = 70°, find ∠ACB.

Answer 12:


Here,CAX =DAX (AX bisects CAD)CAX=70°CAX +DAX + CAB =180° 70° +70°+ CAB =180° CAB =180°-140°CAB =40°  ACB +CBA + CAB =180°   (Sum of the angles of ABC)ACB +ACB+ 40° =180°    (C=B)2ACB=180°-40°ACB=140°2ACB=70°

Question 13:

The side BC of ∆ABC is produced to a point D. The bisector of ∠A meets side BC in L. If ∠ABC = 30° and ∠ACD = 115°, find ∠ALC.

Answer 13:


ACD and ACL make a linear pair.ACD + ACB=180°115°+ ACB=180°ACB=180°-115°ACB=65°We know that the sum of all angles of a triangle is 180°. Therefore, for ABC, we can say that: ABC+BAC+ACB=180° 30°+BAC+65°=180°Or,BAC=85°=LAC=BAC2=85°2Using the above rule for ALC, we can say that:ALC+LAC+ACL=180°ALC+85°2+65°=180°     (ACL=ACB)Or, ALC=180°-85°2-65°= ALC=145°2=7212°Thus,ALC = 7212°    

Question 14:

D is a point on the side BC of ∆ABC. A line PDQ, through D, meets side AC in P and AB produced at Q. If ∠A = 80°, ∠ABC = 60° and ∠PDC = 15°, find (i) ∠AQD (ii) APD.

Answer 14:


ABD and QBD form a linear pair.ABC + QBC=180°60°+QBC=180°QBC=120°PDC=BDQ (Vertically opposite angles)BDQ=15°In QBD:QBD+QDB+BQD=180° (Sum of angles of QBD)120°+15°+BQD=180°BQD=180°-135°BQD=45°AQD=BQD=45°In AQP:QAP+AQP+APQ=180°  (Sum of angles of AQP)80°+45°+APQ=180°APQ=55°APD=APQ

Question 15:

Explain the concept of interior and exterior angles and in each of the figures given below, find x and y.

Answer 15:

The interior angles of a triangle are the three angle elements inside the triangle.
The exterior angles are formed by extending the sides of a triangle, and if the side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

Using these definitions, we will obtain the values of x and y.

(i)
From the given figure, we can see that:ACB + x = 180° (Linear pair) 75° + x = 180°Or, x = 105°We know that the sum of all angles of a triangle is 180°.Therefore, for ABC, we can say that:BAC + ABC +ACB = 180° 40°+ y+ 75° =  180°Or,y = 65°

(ii)
x + 80° =180° (Linear pair)= x = 100°In ABC:x+ y+ 30° = 180° (Angle sum property)100°+30°+y = 180°= y = 50°

(iii)We know that the sum of all angles of a triangle is 180°.Therefore, for ACD, we can say that:30°+100°+y = 180°Or, y = 50°ACB + 100° = 180°ACB = 80°   ...(i)Using the above rule for ACB, we can say that:x+45°+80° = 180°.= x = 55°(iv)We know that the sum of all angles of a triangle is 180°.Therefore, for DBC, we can say that:30°+ 50° + DBC = 180°DBC  = 100°x + DBC= 180° (Linear pair)x = 80°And,y = 30° + 80° = 110° (Exterior angle property)

Page-15.22

Question 16:

Compute the value of x in each of the following figures:

Answer 16:

(i) From the given figure, we can say that:ACD + ACB = 180° (Linear pair)Or,ACB = 180° - 112° = 68°      ...(i)We can also say that:BAE + BAC = 180°  (Linear pair)Or, BAC = 180°-120° = 60°       ...(ii)We know that the sum of all angles of a triangle is 180°.Therefore, for ABC: x+ BAC + ACB = 180°x = 180°-60°-68° = 52°= x = 52°(ii) From the given figure, we can say that:ABC + 120° = 180°  (Linear pair)ABC = 60°We can also say that:ACB +110° = 180° (Linear pair)ACB = 70°We know that the sum of all angles of a triangle is 180°.Therefore, for ABC:x+ ABC + ACB = 180°= x = 50°(iii) From the given figure, we can see that:BAD = ADC  = 52°  (Alternate angles)We know that the sum of all the angles of a triangle is 180°.Therefore, for DEC: x + 40° + 52° = 180°= x = 88°

(iv) In the given figure, we have a quadrilateral whose sum of all angles is 360°.Thus,35° + 45° + 50° + reflex ADC = 360°Or,  reflex ADC = 230°230°+ x= 360° (A complete angle)= x = 130°

Page-15.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *