FBQS
Page-5.27Question 1:
The factorized form of the expression y2 + (x – 1)y – x is ____________.
Answer 1:
y2+(x-1)y-x=y2+xy-y-x=y(y+x)-1(y+x)=(y-1)(y+x)
Hence, the factorized form of the expression y2 + (x – 1)y – x is (y – 1)(y + x).
Hence, the factorized form of the expression y2 + (x – 1)y – x is (y – 1)(y + x).
Question 2:
The factorized form of a3 + (b – a)3 – b3 is ____________.
Answer 2:
a3+(b-a)3-b3=a3+(b3-a3-3ba(b-a))-b3 (Using the identity: (x-y)3=x3-y3-3xy(x-y))=a3+b3-a3-3ba(b-a)-b3=-3ba(b-a)=3ab(a-b)
Hence, the factorized form of a3 + (b – a)3 – b3 is 3ab(a – b).
Hence, the factorized form of a3 + (b – a)3 – b3 is 3ab(a – b).
Question 3:
If 1a+1b+1c=1 and abc=2, then ab2c2+a2bc2+a2b2c=____________.
Answer 3:
Given:1a+1b+1c=1 ...(1)abc=2 ...(2)Now,ab2c2+a2bc2+a2b2c=a2b2c2(1a+1b+1c)=(abc)2(1a+1b+1c)=(2)2(1) (From (1) and (2))=4
Hence, if 1a+1b+1c=1 and abc=2, then ab2c2+a2bc2+a2b2c=4.
Hence, if 1a+1b+1c=1 and abc=2, then ab2c2+a2bc2+a2b2c=4.
Question 4:
Factorization of the polynomial 11x2-10√3x-3 gives ____________.
Answer 4:
11x2-10√3x-3=11x2-11√3x+√3x-3=11x(x-√3)+√3(x-√3)=(11x+√3)(x-√3)
Hence, factorization of the polynomial 11x2-10√3x-3 gives (11x+√3)(x-√3).
Hence, factorization of the polynomial 11x2-10√3x-3 gives (11x+√3)(x-√3).
Question 5:
The polynomial x2 + y2 – z2 – 2xy on factorization gives _____________.
Answer 5:
x2+y2-z2-2xy=(x2+y2-2xy)-z2=(x-y)2-(z)2 (Using the identity: (a-b)2=a2+b2-2ab)=(x-y+z)(x-y-z) (Using the identity: a2-b2=(a+b)(a-b))
Hence, the polynomial x2 + y2 – z2 – 2xy on factorization gives (x-y+z)(x-y-z).
Hence, the polynomial x2 + y2 – z2 – 2xy on factorization gives (x-y+z)(x-y-z).
Question 6:
The factors of the expression a+b+c+2√ab-2√bc-2√ca are ____________.
Answer 6:
a+b+c+2√ab-2√bc-2√ca=(√a)2+(√b)2+(-√c)2+2√ab-2√bc-2√ca=(√a)2+(√b)2+(-√c)2+2√a√b+2√b(-√c)+2√a(-√c)=(√a+√b-√c)2 (Using the identity: a2+b2+c2+2ab+2bc+2ac=(a+b+c)2)=(√a+√b-√c)(√a+√b-√c)
Hence, the factors of the expression a+b+c+2√ab-2√bc-2√ca are (√a+√b-√c) and (√a+√b-√c)..
Hence, the factors of the expression a+b+c+2√ab-2√bc-2√ca are (√a+√b-√c) and (√a+√b-√c)..
Question 7:
The polynomial , x6 + 64y6 on factorization gives _____________.
Answer 7:
x6+64y6=(x2)3+(4y2)3=(x2+4y2)((x2)2+(4y2)2-(x2)(4y2)) (Using the identity: a3+b3=(a+b)(a2+b2-ab))=(x2+4y2)(x4+16y4-4x2y2)
Hence, the polynomial x6 + 64y6 on factorization gives (x2+4y2)(x4+16y4-4x2y2).
Hence, the polynomial x6 + 64y6 on factorization gives (x2+4y2)(x4+16y4-4x2y2).
Question 8:
The factorization form of a4 + b4 – a2b2 is _____________.
Answer 8:
a4+b4-a2b2Adding and subtracting 2a2b2, we get=(a2)2+(b2)2+2a2b2-2a2b2-a2b2=(a2+b2)2-3a2b2 (Using the identity: a2+b2+2ab=(a+b)2)=(a2+b2)2-(√3ab)2=(a2+b2+√3ab)(a2+b2-√3ab) (Using the identity: a2-b2=(a+b)(a-b))
Hence, the factorization form of a4 + b4 – a2b2 is (a2+b2+√3ab)(a2+b2-√3ab).
Hence, the factorization form of a4 + b4 – a2b2 is (a2+b2+√3ab)(a2+b2-√3ab).
Question 9:
If 3x-y5=10 and xy=5, then the value of 27x3-y3125 is ____________.
Answer 9:
Given:3x-y5=10 ...(1)xy=5 ...(2)Now,3x-y5=10Taking cube on both sides, we get⇒(3x-y5)3=103⇒(3x)3-(y5)3-3(3x)(y5)(3x-y5)=1000 (Using the identity: (a-b)3=a3-b3-3ab(a-b))⇒27x3-y3125-95xy(3x-y5)=1000⇒27x3-y3125-95×5×10=1000 (From (1) and (2))⇒27x3-y3125-90=1000⇒27x3-y3125=1000+90⇒27x3-y3125=1090
Hence, the value of 27x3-y3125 is 1090.
Hence, the value of 27x3-y3125 is 1090.
Question 10:
The factorized form of 1xyz(x2+y2+z2)+2(1x+1y+1z) is _____________.
Answer 10:
1xyz(x2+y2+z2)+2(1x+1y+1z)=(x2+y2+z2)xyz+2(yz+xz+xyxyx)=x2+y2+z2+2(yz+xz+xy)xyz=(x+y+z)2xyz (Using the identity: (a+b+c)2=a2+b2+c2+2ab+2bc+2ac)=1xyz(x+y+z)2
Hence, the factorized form of 1xyz(x2+y2+z2)+2(1x+1y+1z) is 1xyz(x+y+z)2.
Hence, the factorized form of 1xyz(x2+y2+z2)+2(1x+1y+1z) is 1xyz(x+y+z)2.
Question 11:
The factorized form of a3 + b3 + 3ab – 1 is ____________.
Answer 11:
a3+b3+3ab-1=a3+b3-1+3ab=a3+b3+(-1)3-3ab(-1)=(a+b-1)(a2+b2+(-1)2-ab-b(-1)-a(-1)) (Using the identity: a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac))=(a+b-1)(a2+b2+1-ab+b+a)
Hence, the factorized form of a3 + b3 + 3ab – 1 is (a+b-1)(a2+b2+1-ab+b+a).
Hence, the factorized form of a3 + b3 + 3ab – 1 is (a+b-1)(a2+b2+1-ab+b+a).
No comments:
Post a Comment