RD Sharma 2020 solution class 9 chapter 5 Factorization of Algebraic Expressions FBQS

FBQS

Page-5.27



Question 1:

The factorized form of the expression y2 + (x – 1)y x is ____________.

Answer 1:

y2+(x-1)y-x=y2+xy-y-x=y(y+x)-1(y+x)=(y-1)(y+x)

Hence, the factorized form of the expression y2 + (x – 1)– x is (y ​– 1)(y + x).


Question 2:

The factorized form of a3 + (ba)3b3 is ____________.

Answer 2:

a3+(b-a)3-b3=a3+(b3-a3-3ba(b-a))-b3        (Using the identity:(x-y)3=x3-y3-3xy(x-y))=a3+b3-a3-3ba(b-a)-b3=-3ba(b-a)=3ab(a-b)

Hence, the factorized form of a3 + (b – a)3 – b3 is 3ab(a – b).


Question 3:

If 1a+1b+1c=1 and abc=2, then ab2c2+a2bc2+a2b2c=____________.

Answer 3:

Given:1a+1b+1c=1      ...(1)abc=2                   ...(2)Now,ab2c2+a2bc2+a2b2c=a2b2c2(1a+1b+1c)=(abc)2(1a+1b+1c)=(2)2(1)            (From (1) and (2))=4

Hence, if 1a+1b+1c=1 and abc=2, then ab2c2+a2bc2+a2b2c=4.


Question 4:

Factorization of the polynomial 11x2-103x-3 gives ____________.

Answer 4:

11x2-103x-3=11x2-113x+3x-3=11x(x-3)+3(x-3)=(11x+3)(x-3)

Hence, factorization of the polynomial 11x2-103x-3 gives (11x+3)(x-3).


Question 5:

The polynomial x2 + y2z2 – 2xy on factorization gives _____________.

Answer 5:

x2+y2-z2-2xy=(x2+y2-2xy)-z2=(x-y)2-(z)2                   (Using the identity: (a-b)2=a2+b2-2ab)=(x-y+z)(x-y-z)         (Using the identity: a2-b2=(a+b)(a-b))

Hence, the polynomial x2 + y2 – z2 – 2xy on factorization gives (x-y+z)(x-y-z).


Question 6:

The factors of the expression a+b+c+2ab-2bc-2ca are ____________.

Answer 6:

a+b+c+2ab-2bc-2ca=(a)2+(b)2+(-c)2+2ab-2bc-2ca=(a)2+(b)2+(-c)2+2ab+2b(-c)+2a(-c)=(a+b-c)2                   (Using the identity: a2+b2+c2+2ab+2bc+2ac=(a+b+c)2)=(a+b-c)(a+b-c)                

Hence, the factors of the expression a+b+c+2ab-2bc-2ca are (a+b-c) and (a+b-c)..


Question 7:

The polynomial , x6 + 64y6 on factorization gives _____________.

Answer 7:

x6+64y6=(x2)3+(4y2)3=(x2+4y2)((x2)2+(4y2)2-(x2)(4y2))                   (Using the identity: a3+b3=(a+b)(a2+b2-ab))=(x2+4y2)(x4+16y4-4x2y2)                

Hence, the polynomial x6 + 64y6 on factorization gives (x2+4y2)(x4+16y4-4x2y2).


Question 8:

The factorization form of a4 + b4 a2b2 is _____________.

Answer 8:

a4+b4-a2b2Adding and subtracting 2a2b2, we get=(a2)2+(b2)2+2a2b2-2a2b2-a2b2=(a2+b2)2-3a2b2                                    (Using the identity: a2+b2+2ab=(a+b)2)=(a2+b2)2-(3ab)2=(a2+b2+3ab)(a2+b2-3ab)           (Using the identity: a2-b2=(a+b)(a-b))         

Hence, the factorization form of a4 + b– a2b2 is (a2+b2+3ab)(a2+b2-3ab).


Question 9:

If 3x-y5=10 and xy=5, then the value of 27x3-y3125 is ____________.

Answer 9:

Given:3x-y5=10              ...(1)xy=5                        ...(2)Now,3x-y5=10Taking cube on both sides, we get(3x-y5)3=103(3x)3-(y5)3-3(3x)(y5)(3x-y5)=1000                  (Using the identity: (a-b)3=a3-b3-3ab(a-b))27x3-y3125-95xy(3x-y5)=100027x3-y3125-95×5×10=1000                               (From (1) and (2))27x3-y3125-90=100027x3-y3125=1000+9027x3-y3125=1090


Hence, the value of 27x3-y3125 is 1090.


Question 10:

The factorized form of 1xyz(x2+y2+z2)+2(1x+1y+1z) is _____________.

Answer 10:

1xyz(x2+y2+z2)+2(1x+1y+1z)=(x2+y2+z2)xyz+2(yz+xz+xyxyx)=x2+y2+z2+2(yz+xz+xy)xyz=(x+y+z)2xyz                (Using the identity: (a+b+c)2=a2+b2+c2+2ab+2bc+2ac)=1xyz(x+y+z)2

Hence, the factorized form of 1xyz(x2+y2+z2)+2(1x+1y+1z) is 1xyz(x+y+z)2.


Question 11:

The factorized form of a3 + b3 + 3ab – 1 is ____________.

Answer 11:

a3+b3+3ab-1=a3+b3-1+3ab=a3+b3+(-1)3-3ab(-1)=(a+b-1)(a2+b2+(-1)2-ab-b(-1)-a(-1))          (Using the identity: a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ac))=(a+b-1)(a2+b2+1-ab+b+a)                

Hence, the factorized form of a3 + b3 + 3ab – 1 is  (a+b-1)(a2+b2+1-ab+b+a).


No comments:

Post a Comment

Contact Form

Name

Email *

Message *