MCQS
Page-4.29
Question 1:
Mark the correct alternative in each of the following:
(1) If x+1x=5, then x2+1x2=
(a) 25
(b) 10
(c) 23
(d) 27
(1) If x+1x=5, then x2+1x2=
(a) 25
(b) 10
(c) 23
(d) 27
Answer 1:

Given

We shall use the identity

Here put


Hence the value of


Hence the correct choice is (c).
Question 2:
If x+1x=2, then x3+1x3 =
(a) 64
(b) 14
(c) 8
(d) 2
(a) 64
(b) 14
(c) 8
(d) 2
Answer 2:

Given

We shall use the identity

Here putting


Hence the value of


Hence the correct choice is (d).
Question 3:
If x+1x = 4, then x4+1x4=
(a) 196
(b) 194
(c) 192
(d) 190
(a) 196
(b) 194
(c) 192
(d) 190
Answer 3:

Given

We shall use the identity

Here put


Squaring on both sides we get,

Hence the value of


Hence the correct choice is (b).
Question 4:
If x+1x=3, then x6+1x6 =
(a) 927
(b) 414
(c) 364
(d) 322
(a) 927
(b) 414
(c) 364
(d) 322
Answer 4:

Given

We shall use the identity


Here put


Take Cube on both sides we get,

Hence the value of


Hence the correct choice is (d).
Question 5:
If x2+1x2 =102, then x-1x =
(a) 8
(b) 10
(c) 12
(d) 13
(a) 8
(b) 10
(c) 12
(d) 13
Answer 5:

Given

We shall use the identity

Here putting



Hence the value of


Hence the correct choice is (b).
Question 6:
If x3+1x3=110, then x+1x=
(a) 5
(b) 10
(c) 15
(d) none of these
(a) 5
(b) 10
(c) 15
(d) none of these
Answer 6:

Given

We shall use the identity


Put


Substitute y = 5 in the above equation we get

The Equation


Hence the value of

The correct choice is (a).
Question 7:
If x3 - 1x3=14, then x-1x =
(a) 5
(b) 4
(c) 3
(d) 2
(a) 5
(b) 4
(c) 3
(d) 2
Answer 7:

Given

We shall use the identity


Put


Substitute y = 2 in above equation we get,

The Equation


Hence the value of

Hence the correct choice is (d).
Question 8:
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
(a) 35
(b) 58
(c) 127
(d) none of these
(a) 35
(b) 58
(c) 127
(d) none of these
Answer 8:

Given

Using identity


By transposing +46 to left hand side we get,

Hence the value of


The correct choice is (a).
Question 9:
(a − b)3 + (b − c)3 + (c − a)3 =
(a) (a + b + c) (a2 + b2 + c2 − ab − bc − ca)
(b) (a − b) (b − c) (c − a)
(c) 3(a − b) ( b− c) (c − a)
(d) none of these
(a) (a + b + c) (a2 + b2 + c2 − ab − bc − ca)
(b) (a − b) (b − c) (c − a)
(c) 3(a − b) ( b− c) (c − a)
(d) none of these
Answer 9:

Using identity

Here


Hence the Value of


The correct choice is

Question 10:
If ab+ba=-1, then a3 − b3 =
(a) 1
(b) −1
(c) 12
(d) 0
(a) 1
(b) −1
(c) 12
(d) 0
Answer 10:

Taking Least common multiple in



Using identity


Hence the value of


The correct choice is (d).
Question 11:
If a − b = −8 and ab = −12, then a3 − b3 =
(a) −244
(b) −240
(c) −224
(d) −260
(a) −244
(b) −240
(c) −224
(d) −260
Answer 11:
Given

Using identity

Here



Transposing -288 to left hand side we get

Hence the value of

The correct choice is

Question 12:
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
(a) 3, x2, − 27x
(b) 3, x − 3, x + 3
(c) 3, x2, 27x
(d) 3, 3, 3
(a) 3, x2, − 27x
(b) 3, x − 3, x + 3
(c) 3, x2, 27x
(d) 3, 3, 3
Answer 12:
Given: volume of cuboid



Take 3 as common factor

Using identity

We get,

Here the dimension of cuboid is 3,

The correct alternate is

Question 13:
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
(a) 10000
(b) 6250
(c) 7500
(d) 3750
(a) 10000
(b) 6250
(c) 7500
(d) 3750
Answer 13:

Using identity


Here




Hence the product of

The correct choice is

Question 14:
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
(a) x16 − y16
(b) x8 − y8
(c) x8 + y8
(d) x16 + y16
(a) x16 − y16
(b) x8 − y8
(c) x8 + y8
(d) x16 + y16
Answer 14:

Using the identity


Hence


The correct choice is

Question 15:
If x4+1x4=623, then x+1x=
(a) 27
(b) 25
(c) 3√3
(d) -3√3
(a) 27
(b) 25
(c) 3√3
(d) -3√3
Answer 15:

Given

We shall use the identity

Here put


We shall use the identity


Taking square root on both sides we get,

Hence the value of


Hence the correct choice is (c).
Question 16:
If x4+1x4=194, then x3+1x3 =
(a) 76
(b) 52
(c) 64
(d) none of these
(a) 76
(b) 52
(c) 64
(d) none of these
Answer 16:

Using identity

Here,



Again using identity

Here


Substituting


Using identity

Here


Hence the value of


The correct choice is (b).
Question 17:
If x-1x=154, then x+1x=
(a) 4
(b) 174
(c) 134
(d) 14
(a) 4
(b) 174
(c) 134
(d) 14
Answer 17:

Given

We shall use the identity

Here putting



Substitute




Hence the value of


Hence the correct choice is (b).
Question 18:
If 3x+2x=7, then (9x2-4x2)=
(a) 25
(b) 35
(c) 49
(d) 30
(a) 25
(b) 35
(c) 49
(d) 30
Answer 18:

Given

Using identity

Here


Substituting



By transposing


Again using identity


Substituting


Using identity

Here


Substituting


The value of


The correct choice is (b)
Question 19:
If a2 + b2 + c2 − ab − bc − ca =0, then
(a) a + b + c
(b) b + c = a
(c) c + a = b
(d) a = b = c
(a) a + b + c
(b) b + c = a
(c) c + a = b
(d) a = b = c
Answer 19:

Multiplying both sides by 2 we get,



Therefore the sum of positive quantities is zero if and only if each quantity is zero.


If


The correct choice is (d).
Question 20:
If a + b + c = 0, then a2bc + b2ca + c2ab=
(a) 0
(b) 1
(c) −1
(d) 3
(a) 0
(b) 1
(c) −1
(d) 3
Answer 20:

Given

Using identity



Hence the value of

The correct choice is (d).
Question 21:
If a1/3 + b1/3 + c1/3 = 0, then
(a) a + b + c = 0
(b) (a + b + c)3 =27abc
(c) a + b + c = 3abc
(d) a3 + b3 + c3 = 0
(a) a + b + c = 0
(b) (a + b + c)3 =27abc
(c) a + b + c = 3abc
(d) a3 + b3 + c3 = 0
Answer 21:

Using identity

Here


Taking Cube on both sides we get,

Hence the value of


The correct choice is

Question 22:
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
(a) 108
(b) 207
(c) 669
(d) 729
(a) 108
(b) 207
(c) 669
(d) 729
Answer 22:

Given

Using identity


By transposing +46 to left hand side we get,

Using identity


The value of


Hence the correct choice is

Question 23:
(a2-b2)3+(b2-c2)3+(c2-a2)3(a-b)3 + (b-c)3 + (c-a)3=
(a) 3(a + b) ( b+ c) (c + a)
(b) 3(a − b) (b − c) (c − a)
(c) (a − b) (b − c) (c − a)
(d) none of these
(a) 3(a + b) ( b+ c) (c + a)
(b) 3(a − b) (b − c) (c − a)
(c) (a − b) (b − c) (c − a)
(d) none of these
Answer 23:

Using Identity



Hence the value of


The correct choice is

Question 24:
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
(a) a6 + b6
(b) a6 − b6
(c) a3 − b3
(d) a3 + b3
(a) a6 + b6
(b) a6 − b6
(c) a3 − b3
(d) a3 + b3
Answer 24:

Using identity


We can rearrange as

Again using the identity

Here


Hence the product of


The correct choice is

Question 25:
The product (x2−1) (x4 + x2 + 1) is equal to
(a) x8 − 1
(b) x8 + 1
(c) x6 − 1
(d) x6 + 1
(a) x8 − 1
(b) x8 + 1
(c) x6 − 1
(d) x6 + 1
Answer 25:

Using identity

Here


Hence the product value of


The correct alternate is

Question 26:
If ab+ba= 1, then a3 + b3 =
(a) 1
(b) −1
(c) 12
(d) 0
(a) 1
(b) −1
(c) 12
(d) 0
Answer 26:



Using identity


Hence the value of


The correct choice is (d).
Question 27:
If 49a2 − b = (7a+12) (7a-12) , then the value of b is
(a) 0
(b) 14
(c) 1√2
(d) 12
(a) 0
(b) 14
(c) 1√2
(d) 12
Answer 27:
Given

Using identity

We get

Equating ‘b’ on both sides we get

Hence the value of b is

The correct choice is

Question 28:
One of the factors of (25x2 – 1) + (1 + 5x)2 is
(a) 5 + x
(b) 5 – x
(c) 5x – 1
(d) 10x
(a) 5 + x
(b) 5 – x
(c) 5x – 1
(d) 10x
Answer 28:
(25x2-1)+(1+5x)2=((5x)2-(1)2)+(1+5x)2=(5x-1)(5x+1)+(1+5x)(1+5x) (Using the identity: a2-b2=(a+b)(a-b))=(5x+1)(5x-1+1+5x)=(5x+1)(10x)Therefore, (25x2-1)+(1+5x)2 has two factors (5x+1) and (10x).Hence, the correct option is (d).
Question 29:
If 9x2-b=(3x+12) (3x-12), then the value of b is
(a) 0
(b) 1√2
(c) 14
(d) 12
(a) 0
(b) 1√2
(c) 14
(d) 12
Answer 29:
Given:9x2-b=(3x+12)(3x-12)9x2-b=(3x+12)(3x-12)⇒9x2-b=(3x)2-(12)2 (Using the identity: a2-b2=(a+b)(a-b))⇒9x2-b=9x2-14⇒-b=-14⇒b=14Hence, the correct option is (c).
Question 30:
The coefficient of x in (x + 3)3 is
(a) 1
(b) 9
(c) 18
(d) 27
(a) 1
(b) 9
(c) 18
(d) 27
Answer 30:
(x+3)3=(x)3+(3)3+3(x)(3)(x+3) (Using the identity: (a+b)3=a3+b3+3ab(a+b))=x3+27+9x(x+3)=x3+27+9x2+27x=x3+9x2+27x+27Thus, the coefficient of x is 27.Hence, the correct option is (d).
Question 31:
(a) 1
(b) 477
(c) 487
(d) 497
Answer 31:
(249)2-(248)2=(249+248)(249-248) (Using the identity: a2-b2=(a+b)(a-b))=(497)(1)=497Hence, the correct option is (d).
Question 32:
Which of the following is a factor of (x + y)3 – (x3 + y3)?
(a) x2 + 2xy + y2
(b) x2 – xy + y2
(c) xy2
(d) 3xy
(a) x2 + 2xy + y2
(b) x2 – xy + y2
(c) xy2
(d) 3xy
Answer 32:
(x+y)3-(x3+y3)=(x)3+(y)3+3(x)(y)(x+y)-(x3+y3) (Using the identity: (a+b)3=a3+b3+3ab(a+b))=x3+y3+3xy(x+y)-x3-y3=3xy(x+y)Thus, (x+y)3-(x3+y3) has two factors (3xy) and (x+y).Hence, the correct option is (d).
Question 33:
If xy+yx=-1(x,y≠0), the value of x3 – y3 is
(a) 1
(b) –1
(c) 0
(d) 12
(a) 1
(b) –1
(c) 0
(d) 12
Answer 33:
Given:xy+yx=-1⇒x2+y2xy=-1⇒x2+y2=-xy⇒x2+y2+xy=0 ...(1)Now,(x3-y3)=(x-y)(x2+y2+xy) (Using the identity: a3-b3=(a-b)(a2+b2+ab))=(x-y)×0 (From (1))=0Hence, the correct option is (c).
Question 34:
If xy+yx=1(x, y≠0), the value of x3 + y3 is
(a) 1
(b) –1
(c) 0
(d) -12
(a) 1
(b) –1
(c) 0
(d) -12
Answer 34:
Given:xy+yx=1⇒x2+y2xy=1⇒x2+y2=xy⇒x2+y2-xy=0 ...(1)Now,(x3+y3)=(x+y)(x2+y2-xy) (Using the identity: a3+b3=(a+b)(a2+b2-ab))=(x+y)×0 (From (1))=0Hence, the correct option is (c).
Question 35:
If x2 + y2 + xy = 1 and x + y = 2, then xy =
(a) –3
(b) 3
(c) -32
(d) 0
(a) –3
(b) 3
(c) -32
(d) 0
Answer 35:
Given:x2+y2+xy=1 ...(1)x+y=2 ...(2)Now,x+y=2Squaring both sides, we get⇒(x+y)2=22⇒x2+y2+2xy=4 (Using the identity: (a+b)2=a2+b2+2ab)⇒x2+y2+xy+xy=4⇒1+xy=4 (From (1))⇒xy=4-1⇒xy=3Hence, the correct option is (b).
Question 36:
If a, b, c are natural numbers such that a2 + b2 + c2 = 29 and ab + bc + ca = 26, and a + b + c = ______.
(a) 9
(b) 6
(c) 7
(d) 10
(a) 9
(b) 6
(c) 7
(d) 10
Answer 36:
Given:a2+b2+c2=29 ...(1)ab+bc+ca=26 ...(2)Now,(a+b+c)2=a2+b2+c2+2(ab+bc+ca) (Using the identity: (a+b+c)2=a2+b2+c2+2(ab+bc+ca))=29+2(26) (From (1) and (2))=29+52=81Since, (a+b+c)2=81 and a, b, c are natural numbersTherefore, a+b+c=9.Hence, the correct option is (a).
Question 37:
If 2x+y3=12 and xy = 30, then 8x3+y327=_______
(a) 1008
(b) 168
(c) 106
(d) none of these
(a) 1008
(b) 168
(c) 106
(d) none of these
Answer 37:
Given:2x+y3=12 ...(1)xy=30 ...(2)Now,2x+y3=12Taking cube on both sides, we get⇒(2x+y3)3=123⇒(2x)3+(y3)3+3(2x)(y3)(2x+y3)=1728 (Using the identity: (a+b)3=a3+b3+3ab(a+b))⇒8x3+y327+2xy(2x+y3)=1728⇒8x3+y327+2×30×12=1728 (From (1) and (2))⇒8x3+y327+720=1728⇒8x3+y327=1728-720⇒8x3+y327=1008Hence, the correct option is (a).
superb !!!!!!!!!!!!!\(@^0^@)/
ReplyDelete