FBQS
Page-3.18Question 1:
The number obtained by rationalizing the denominator of 1√7+2 is __________.
Answer 1:
1√7+2Multiply and divide by (√7-2), we get=1√7+2×√7-2√7-2=√7-2(√7)2-22 (Using the identity: (a+b)(a-b)=a2-b2)=√7-27-4=√7-23
Hence, the number obtained by rationalizing the denominator of 1√7+2 is √7-23 ..
Hence, the number obtained by rationalizing the denominator of 1√7+2 is √7-23 ..
Question 2:
If 1√9-√8=A+B√2, then A = ____________ and B = ____________.
Answer 2:
1√9-√8Multiply and divide by (√9+√8), we get=1√9-√8×√9+√8√9+√8=√9+√8(√9)2-(√8)2 (Using the identity: (a+b)(a-b)=a2-b2)=√9+√89-8=√9+√81=√9+√8=3+2√2Now, it is given that1√9-√8=A+B√2⇒3+2√2=A+B√2⇒A=3 and B=2
Hence, if 1√9-√8=A+B√2, then A = 3 and B = 2.
Hence, if 1√9-√8=A+B√2, then A = 3 and B = 2.
Question 3:
After rationalizing the denominator of 73√3-2√2, we get the denominator as __________.
Answer 3:
73√3-2√2Multiply and divide by (3√3+2√2), we get=73√3-2√2×3√3+2√23√3+2√2=7(3√3+2√2)(3√3)2-(2√2)2 (Using the identity: (a+b)(a-b)=a2-b2)=21√3+14√227-8=21√3+14√219
Hence, after rationalizing the denominator of 73√3-2√2, we get the denominator as 21√3+14√219.
Hence, after rationalizing the denominator of 73√3-2√2, we get the denominator as 21√3+14√219.
Question 4:
If a=2+√3, then a-1a=___________.
Answer 4:
Given: a=2+√3Now, 1a=12+√3Multiply and divide RHS by (2-√3), we get⇒1a=12+√3×2-√32-√3⇒1a=2-√3(2)2-(√3)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒1a=2-√34-3⇒1a=2-√31⇒1a=2-√3Thus,a-1a=(2+√3)-(2-√3) =2+√3-2+√3 =2√3
Hence, if a=2+√3, then a-1a=2√3.
Hence, if a=2+√3, then a-1a=2√3.
Question 5:
If a=5+2√6, then a+1a=_________.
Answer 5:
Given: a=5+2√6Now, 1a=15+2√6Multiply and divide RHS by (5-2√6), we get⇒1a=15+2√6×5-2√65-2√6⇒1a=5-2√6(5)2-(2√6)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒1a=5-2√625-24⇒1a=5-2√61⇒1a=5-2√6Thus,a+1a=(5+2√6)+(5-2√6) =5+2√6+5-2√6 =10
Hence, if a=5+2√6, then a+1a=10.
Hence, if a=5+2√6, then a+1a=10.
Question 6:
If x=√6+√5, then x2+1x2-2=_________.
Answer 6:
Given: x=√6+√5Now, 1x=1√6+√5Multiply and divide RHS by (√6-√5), we get⇒1x=1√6+√5×√6-√5√6-√5⇒1x=√6-√5(√6)2-(√5)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒1x=√6-√56-5⇒1x=√6-√51⇒1x=√6-√5Thus,x2+1x2-2=(x-1x)2 =((√6+√5)-(√6-√5))2 =(√6+√5-√6+√5)2 =(2√5)2 =20
Hence, if x=√6+√5, then x2+1x2-2=20.
Hence, if x=√6+√5, then x2+1x2-2=20.
Question 7:
If x=3-√8, then (x-1x)2= ___________.
Answer 7:
Given: x=3-√8Now, 1x=13-√8Multiply and divide RHS by (3+√8), we get⇒1x=13-√8×3+√83+√8⇒1x=3+√8(3)2-(√8)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒1x=3+√89-8⇒1x=3+√81⇒1x=3+√8Thus,(x-1x)2=((3-√8)-(3+√8))2 =(3-√8-3-√8)2 =(-2√8)2 =32
Hence, if x=3-√8, then (x-1x)2=32.
Hence, if x=3-√8, then (x-1x)2=32.
Question 8:
If x=2√3-√5and y=2√3+√5, then x + y = __________.
Answer 8:
Given:x=2√3-√5y=2√3+√5Now,x=2√3-√5Multiply and divide RHS by (√3+√5), we get⇒x=2√3-√5×√3+√5√3+√5⇒x=2(√3+√5)(√3)2-(√5)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒x=2(√3+√5)3-5⇒x=2(√3+√5)-2⇒x=-(√3+√5)1⇒x=-√3-√5y=2√3+√5Multiply and divide RHS by (√3-√5), we get⇒y=2√3+√5×√3-√5√3-√5⇒y=2(√3-√5)(√3)2-(√5)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒y=2(√3-√5)3-5⇒y=2(√3-√5)-2⇒y=-(√3-√5)1⇒y=-√3+√5Thus,x+y=(-√3-√5)+(-√3+√5) =(-√3-√5-√3+√5) =(-2√3) =-2√3
Hence, x + y = -2√3.
Hence, x + y = -2√3.
Question 9:
If √5+2√6=A+√3, then A=_________.
Answer 9:
Given:√5+2√6=A+√3Now,√5+2√6=A+√3⇒√2+3+2√6=A+√3⇒√(√2)2+(√3)2+2√6=A+√3⇒√(√2+√3)2=A+√3 (Using the identity: (a+b)2=a2+b2+2ab)⇒√2+√3=A+√3⇒A=√2
Hence, if √5+2√6=A+√3, then A=√2.
Hence, if √5+2√6=A+√3, then A=√2.
Question 10:
√7+2√6-√7-2√6=__________.
Answer 10:
√7+2√6=√6+1+2√6=√(√6)2+(1)2+2√6=√(√6+1)2 (Using the identity: (a+b)2=a2+b2+2ab)=√6+1 ....(1)√7-2√6=√6+1-2√6=√(√6)2+(1)2-2√6=√(√6-1)2 (Using the identity: (a-b)2=a2+b2-2ab)=√6-1 ....(2)From (1) and (2)√7+2√6-√7-2√6=(√6+1)-(√6-1) =√6+1-√6+1 =2
Hence, √7+2√6-√7-2√6=2.
Hence, √7+2√6-√7-2√6=2.
Question 11:
If x=2√10-√8 and y=2√10+2√2, then (x-y)2=____________.
Answer 11:
Given:x=2√10-√8y=2√10+2√2Now,x=2√10-√8Multiply and divide RHS by (√10+√8), we get⇒x=2√10-√8×√10+√8√10+√8⇒x=2(√10+√8)(√10)2-(√8)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒x=2(√10+√8)10-8⇒x=2(√10+√8)2⇒x=(√10+√8)1⇒x=√10+√8⇒x=√10+2√2y=2√10+2√2Multiply and divide RHS by (√10-2√2), we get⇒y=2√10+2√2×√10-2√2√10-2√2⇒y=2(√10-2√2)(√10)2-(2√2)2 (Using the identity: (a+b)(a-b)=a2-b2)⇒y=2(√10-2√2)10-8⇒y=2(√10-2√2)2⇒y=(√10-2√2)1⇒y=√10-2√2Thus,(x-y)2=((√10+2√2)-(√10-2√2))2 =(√10+2√2-√10+2√2)2 =(4√2)2 =32
Hence, if x=2√10-√8 and y=2√10+2√2, then (x-y)2=32.
Hence, if x=2√10-√8 and y=2√10+2√2, then (x-y)2=32.
Question 12:
If √13-x√10=√8+√5, then x=__________.
Answer 12:
Given:√13-x√10=√8+√5Now,√13-x√10=√8+√5⇒√13-x√10=√(√8+√5)2⇒√13-x√10=√(√8)2+(√5)2+2(√8)(√5) (Using the identity: (a+b)2=a2+b2+2ab)⇒√13-x√10=√8+5+2(2√2)(√5) ⇒√13-x√10=√13+4√10⇒-x=4⇒x=-4
Hence, if √13-x√10=√8+√5, then x=-4.
Hence, if √13-x√10=√8+√5, then x=-4.
No comments:
Post a Comment