RD Sharma 2020 solution class 9 chapter 2 Exponents of Real Numbers Exercise 2.2

Exercise 2.2

Page-2.24

Question 1:

Assuming that x, y, z are positive real numbers, simplify each of the following:

(i) x-35

(ii) x3 y-2

(iii) (x-2/3y-1/2)2

(iv) (x)-2/3y4÷xy-1/2

(v) 243 x10y5z105

(vi) x-4y-105/4

(vii) 235672

Answer 1:

We have to simplify the following, assuming thatare positive real numbers

(i) Given

As x is positive real number then we have

Hence the simplified value of is

(ii) Given

As x and y are positive real numbers then we can write 

By using law of rational exponents we have 

Hence the simplified value of is

(iii) Given

As x and y are positive real numbers then we have 

By using law of rational exponents we have 

By using law of rational exponents we have


x-23y-122=1x23+23×1y12+12=1x43×1y22=1x43×1y=1x43y

Hence the simplified value of is .


 iv x-23 y4 ÷ xy-12=x12-23 y412 ÷ x × y-1212=x12×-23 × y4×12x12 × y-12×12    =x-13 × y2x12 × y-14by using the law of rational exponents, am ÷ an = am-n, we have     x-13-12 × y2+14=x-56 × y94            =y94x56v. 243  x10 y5 z105=243 × x10 × y5 × z1015=24315 × x1015 × y515 × z1015=3515 × x10×15 × y5×15 × z10×15=3 × x2 × y × z2=3x2yz2vi x-4y-1054=x-454y-1054=x-4×54y-10×54=x-5y-252=y252x5

(vii) 235672

235672=232+2+1672=232×232×231×672=23×23×231×672
=23×23×231×672=162493=5127203=512720312

 

Question 2:

Simplify:

(i) (16-1/5)5/2

(ii) 32-35

(iii) (343)-23

(iv) (0.001)1/3

(v) (25)3/2×(243)3/5(16)5/4×(8)4/3

(vi) 258 ÷ 2513

(vii) 5-1×7252×7-47/2 × 5-2×7353×7-5-5/2

Answer 2:

(1) Given

By using law of rational exponents we have

Hence the value of is
(ii) 
32-35

=13235=13235=12535=125×35
=123=18

(iii) Given

Hence the value of is

(iv) Given

The value of is

(v) Given

Hence the value of is

(vi) Given. So,

By using the law of rational exponents

Hence the value of is

(vii) Given . So,

Hence the value of is

Question 3:

Prove that:

(i) 3×5-3 ÷ 3-13 5×3×566=35

(ii) 93/2-3×50-181-1/2 = 15

(iii) 14-2-3×82/3×40+916-1/2 = 163

(iv) 21/2×31/3×41/410-1/5×53/5 ÷ 34/3×5-7/54-3/5×6=10

(v) 14 +(0.01)-1/2-(27)2/3 =32

(vi) 2n + 2n -12n+1-2n=32

(vii) 64125-2/3 + 12566251/4 + 25643 = 6516

(viii) 3-3×62×9852×1/253×(15)-4/3×31/3=282

(ix) (0.6)0-(0.1)-138-1323+-13-1=-32

Answer 3:

(i) We have to prove that

By using rational exponent we get,

Hence,

(ii) We have to prove that. So,

Hence,

(iii) We have to prove that

Now,

Hence,

(iv) We have to prove that. So,

Let

Hence,

(v) We have to prove that

Let

 

Hence,

(vi) We have to prove that . So,

Let

Hence,

(vii) We have to prove that. So let

By taking least common factor we get 

 

Hence,

(viii) We have to prove that. So,

Let

Hence,

(ix) We have to prove that. So,

Let

Hence,

Page-2.25

Question 4:

Show that:
(i) 11+xa-b+11+xb-a=1

(ii) xaa-bxaa+b÷xbb-axbb+aa+b=1

(iii) x1a-b1a-cx1b-c1b-ax1c-a1c-b=1

(iv) xa2+b2xaba+bxb2+c2xbcb+cxc2+a2xaca+c=x2a3+b3+c3

(v) xa-ba+bxb-cb+cxc-ac+a=1

(vi) xa-a-11a-1aa+1=x

(vii) ax+1ay+1x+yay+2az+2y+zaz+3ax+3z+x=1

(viii) 3a3ba+b3b3cb+c3c3ac+a=1

Answer 4:

(i)
11+xa-b+11+xb-a
=11+xaxb+11+xbxa=xbxb+xa+xaxa+xb=xb+xaxa+xb=1

(ii)
xaa-bxaa+b÷xbb-axbb+aa+b=xaa-bxaa+b×xbb+axbb-aa+b=xa2-abxa2+ab×xb2+abxb2-aba+b
=xa2-ab-a2-ab×xb2+ab-b2+aba+b=x-2ab×x2aba+b=x-2ab+2aba+b=x0a+b=1

(iii)
x1a-b1a-cx1b-c1b-ax1c-a1c-b=x1a-b×1a-cx1b-c×1b-ax1c-a×1c-b=x1a-b×1a-c+1b-c×1b-a+1c-a×1c-b=xb-c-a-c+a-ba-ba-cb-c=x0=1

(iv)
xa2+b2xaba+bxb2+c2xbcb+cxc2+a2xaca+c=xa2+b2-aba+bxb2+c2-bcb+cxc2+a2-aca+c=xa+ba2+b2-abxb+cb2+c2-bcxa+cc2+a2-ac=xa3+b3xb3+c3xa3+c3=x2a3+b3+c3

(v)
xa-ba+bxb-cb+cxc-ac+a=xa-ba+bxb-cb+cxc-ac+a=xa2-b2xb2-c2xc2-a2=xa2-b2+b2-c2+c2-a2=x0=1

(vi)
 xa-a-11a-1aa+1=xa-1a1a-1×aa+1=xa2-1aaa2-1=xa2-1a×aa2-1=x1=x

(vii)
ax+1ay+1x+yay+2az+2y+zaz+3ax+3z+x=ax+1-y-1x+yay+2-z-2y+zaz+3-x-3z+x=ax-yx+yay-zy+zaz-xz+x=ax2-y2+y2-z2+z2-x2=a0=1

(viii)
3a3ba+b3b3cb+c3c3ac+a=3a-ba+b3b-cb+c3c-ac+a=3a2-b2+b2-c2+c2-a2=30=1

Question 5:

Question

Answer 5:

Let 2x=3y=12z=k
2=k1x,3=k1y,12=k1z
Now,
12=k1z22×3=k1zk1x2×k1y=k1zk2x+1y=k1z2x+1y=1z

Question 6:

Question

Answer 6:

 Let 2x=3y=6-z=k
2=k1x, 3=k1y,6=k1-z
Now,
6=2×3=k1-zk1x×k1y=k1-zk1x+1y=k1-z1x+1y=1-z1x+1y+1z=0

Question 7:

Question

Answer 7:

Let ax=by=cz=k
So, a=k1x,b=k1y,c=k1z
Thus, 
b2=ack1y2=k1xk1zk2y=k1x+1z2y=1x+1z
2y=z+xxzy=2zxz+x

Page-2.26

Question 8:

Question

Answer 8:

Let 3x=5y=75z=k
3=k1x, 5=k1y, 75=k1z52×3=k1zk1y2×k1x=k1zk2y×k1x=k1z
k2y+1x=k1z2y+1x=1z2x+yxy=1zz=xy2x+y

Question 9:

If 27x =93x,  find x.

Answer 9:

We are given. We have to find the value of

Since

By using the law of exponents we get, 

On equating the exponents we get,

Hence,

Question 10:

Find the values of x in each of the following:

(i) 25x÷2x =2205

(ii) (23)4=(22)x

(iii) 35x 532x=12527

(iv) 5x-2×32x-3 =135

(v) 2x-7×5x-4=1250

(vi) 432x+12=132

(vii) 52x+3=1

(viii) 13x=44-34-6

(ix) 35x+1=12527

Answer 10:

From the following we have to find the value of x

(i) Given

By using rational exponents

On equating the exponents we get,

The value of x is

(ii) Given

On equating the exponents 

Hence the value of x is

(iii) Given

Comparing exponents we have,

Hence the value of x is

(iv) Given

On equating the exponents of 5 and 3 we get,

And,

The value of x is

(v) Given

On equating the exponents we get 

And, 

Hence the value of x is

(vi) 
432x+12=132

22134x+12=12524x+13=2-5

On comparing we get, 
4x+13=-54x+1=-154x=-16x=-4

(vii) 52x+3=1

52x+3=502x+3=0x=-32

(viii) 13x=44-34-6

13x=224-34-613x=28-34-613x=256-81-613x=16913x=132

On comparing we get, 
x=2on squaring both sides we get, x=4

(ix) 35x+1=12527
35x+1=53335x+12=35-3

On comparing we get, 

x+12=-3x+1=-6x=-7

Question 11:

Question

Answer 11:

 x=213+223
Cubing on both sides, we get
x3=213+2233x3=2133+2233+3×213×223213+223x3=2+22+3×21+23xx3=2+4+3×2xx3-6x=6

Question 12:

Question

Answer 12:

9x+2=240+9x
9x×92=240+9x9x92-1=2409x81-1=2409x×80=2409x=332x=312x=1x=12
 8xx=8×1212=412=2

Question 13:

Question

Answer 13:

 3x+1=9x-2
3x×3=9x923x×3=32x322=32x3434×3=32x3x35=32x-x
35=3x
Comparing both sides, we get
x = 5
So, 21+x=21+5=26=64

Question 14:

If 34x=81-1 and 101y=0.0001, find the value of 2-x+4y.

Answer 14:

It is given that 34x=81-1 and 101y=0.0001.
Now,
34x=81-134x=34-13x4=3-14x=-1
And,
101y=0.0001101y=110000101y=1104101y=10-41y=-4y=-14
Therefore, the value of 2-x+4y is 21+4-14=20=1.

Question 15:

If 53x=125 and 10y=0.001, find x and y.

Answer 15:

It is given that 53x=125 and 10y=0.001.
Now,
53x=12553x=533x=3x=1
And,
10y=0.00110y=1100010y=10-3y=-3
Hence, the values of x and y are 1 and −3, respectively.

Question 16:

Solve the following equations:
(i) 3x+1=27×34
(ii) 42x=163-6y=82
(iii) 3x-1×52y-3=225
(iv) 8x+1=16y+2 and, 123+x=143y
(v) 4x-1×0.53-2x=18x

(vi) ab=ba1-2x, where a and b are distinct primes

Answer 16:

(i)
3x+1=27×343x+1=33×343x+1=33+43x+1=37x+1=7x=6

(ii)
42x=163-6y=8242x=82 and 163-6y=8242x=812×2 and 1613×-6y=812×2 42x=8 and 16-2y=824x=23 and 2-8y=234x=3 and -8y=3x=34 and y=-83

(iii)
3x-1×52y-3=2253x-1×52y-3=3×3×5×53x-1×52y-3=32×52x-1=2 and 2y-3=2x=3 and y=52

(iv)
8x+1=16y+2 and, 123+x=143y23x+1=24y+2 and 123+x=1223y23x+3=24y+8 and 123+x=126y3x+3=4y+8 and 3+x=6y
Now,
3+x=6yx=6y-3
Putting x = 6y − 3 in 3x-4y=5, we get
36y-3-4y=518y-9-4y=514y=14y=1
Putting y = 1 in x=6y-3, we get
x=6×1-3=3

(v)
4x-1×0.53-2x=18x22x-1×123-2x=123x22x-2×2-3-2x=2-3x22x-2-3+2x=2-3x4x-5=-3x7x=5x=57

(vi)
ab=ba1-2xab12=ab-1-2x12=-1-2x12=2x-132=2xx=34

Question 17:

If a and b are distinct primes such that a6b-43=axb2y, find x and y.

Answer 17:

Given: a6b-43=axb2y
a6b-43=axb2ya6b-413=axb2ya6×13b-4×13=axb2ya2b-43=axb2yx=2  and y=-23

Question 18:

If a and b are different positive primes such that

(i) a-1b2a2b-47÷a3b-5a-2b3=axby, find x and y.

(ii) a+b-1a-1+b-1=axby, find x + y + 2.

Answer 18:

(i)
a-1b2a2b-47÷a3b-5a-2b3=axbya-7b14a14b-28÷a3b-5a-2b3=axbya-7-14b14+28÷a3+2b-5-3=axbya-21b42÷a5b-8=axbya-21-5b42+8=axbya-26b50=axbyx=-26  and  y=50

(ii)
a+b-1a-1+b-1=axby1a+b1a+1b=axby1a+ba+bab=axby1ab=axbyab-1=axbya-1b-1=axbyx=-1  and  y=-1
Therefore, the value of x + y + 2 is −1 −1 + 2 = 0.

Question 19:

If 2x×3y×5z=2160, find x , y and z. Hence, compute the value of 3x×2-y×5-z.

Answer 19:

Given: 2x×3y×5z=2160
First, find out the prime factorisation of 2160.
2216021080254022703135345315551
It can be observed that 2160 can be written as 24×33×51.
Also,
2x×3y×5z=24×33×51x=4, y=3, z=1
Therefore, the value of 3x×2-y×5-z is 34×2-3×5-1=81×18×15=8140.

Question 20:

If 1176=2a×3b×7c, find the values of a, b and c. Hence, compute the value of 2a×3b×7-c as a fraction.

Answer 20:

First find the prime factorisation of 1176.
21176258822943147749771
It can be observed that 1176 can be written as 23×31×72.
1176=2a3b7c=233172
So, a = 3, b = 1 and c = 2.
Therefore, the value of 2a×3b×7-c  is 23×31×7-2=8×3×149=2449

Page-2.27

Question 21:

Simplify:

(i) xa+bxca-bxb+cxab-cxc+axbc-a

(ii) lmxlxm×mnxmxn×nlxnxl

Answer 21:

(i)
xa+bxca-bxb+cxab-cxc+axbc-a=xa+ba-bxca-bxb+cb-cxab-cxc+ac-axbc-a=xa+ba-bxca-bcxb+cb-cxab-acxc+ac-axbc-ab=xa2-b2xb2-c2xc2-a2xca-bc+ab-ac+bc-ab=xa2-b2+b2-c2+c2-a2xca-bc+ab-ac+bc-ab=x0x0=1

(ii)
xlxmlm×xmxnmn×xnxlnl=xlxm1ml×xmxn1mn×xnxl1nl=xl-m1ml×xm-n1mn×xn-l1nl=xl-mml×xm-nmn×xn-lnl=xl-mml+m-nmn+n-lnl=xln-mn+lm-nl+nm-lmnml=x0=1

Question 22:

Show that: a+1bm×a-1bnb+1am×b-1an=abm+n

Answer 22:


a+1bm×a-1bnb+1am×b-1an=ab+1bm×ab-1bnab+1am×ab-1an=ab+1bab+1am×ab-1bab-1an=ab+1b×aab+1m×ab-1b×aab-1n=abm×abn=abm×abn=abm+n

Question 23:

(i) If a=xm+nyl, b=xn+lym and c=xl+myn, prove that am-nbn-lcl-m=1.

(ii) If x=am+n, y=an+l and z=al+m, prove that xmynzl=xnylzm.

Answer 23:

(i) Given: a=xm+nyl, b=xn+lym and c=xl+myn
Putting the values of a, b and c in am-nbn-lcl-m, we get
am-nbn-lcl-m=xm+nylm-nxn+lymn-lxl+mynl-m=xm+nm-nylm-nxn+ln-lymn-lxl+ml-mynl-m=xm2-n2xn2-l2xl2-m2ylm-lnymn-mlynl-nm=xm2-n2+n2-l2+l2-m2ylm-ln+mn-ml+nl-nm=x0y0=1

(ii) Given: x=am+n, y=an+l and z=al+m
Putting the values of x, y and z in xmynzl, we get
xmynzl=am+nman+lnal+ml=am2+nman2+lnal2+lm=am2+n2+l2+nm+ln+lm
Putting the values of x, y and z in xnylzm, we get
xnylzm=am+nnan+l lal+mm=amn+n2anl+l2 alm+m2=amn+n2+nl+l2+lm+m2
So, xmynzl = xnylzm

No comments:

Post a Comment

Contact Form

Name

Email *

Message *