Exercise 2.2
Page-2.24Question 1:
Assuming that x, y, z are positive real numbers, simplify each of the following:
(i) (√x-3)5
(ii) √x3 y-2
(iii) (x-2/3y-1/2)2
(iv) (√x)-2/3√y4÷√xy-1/2
(v) 5√243 x10y5z10
(vi) (x-4y-10)5/4
(vii) (√2√3)5(67)2
Answer 1:
We have to simplify the following, assuming thatare positive real numbers
(i) Given
As x is positive real number then we have
Hence the simplified value of is
(ii) Given
As x and y are positive real numbers then we can write
By using law of rational exponents we have
Hence the simplified value of is
(iii) Given
As x and y are positive real numbers then we have
By using law of rational exponents we have
By using law of rational exponents we have
(x-23y-12)2=1x23+23×1y12+12=1x43×1y22=1x43×1y=1x43y
Hence the simplified value of is
.
(iv) (√x)-23 √y4 ÷ √xy-12=(x12)-23 (y4)12 ÷ (x × y-12)12=x12×-23 × y4×12x12 × y-12×12 =x-13 × y2x12 × y-14by using the law of rational exponents, am ÷ an = am-n, we have x-13-12 × y2+14=x-56 × y94 =y94x56(v). 5√243 x10 y5 z10=(243 × x10 × y5 × z10)15=(243)15 × (x10)15 × (y5)15 × (z10)15=(35)15 × x10×15 × y5×15 × z10×15=3 × x2 × y × z2=3x2yz2(vi) (x-4y-10)54=(x-4)54(y-10)54=x-4×54y-10×54=x-5y-252=y252x5
(vii) (√2√3)5(67)2
(√2√3)5(67)2=(√2√3)2+2+1(67)2=(√2√3)2×(√2√3)2×(√2√3)1×(67)2=(23)×(23)×(√2√3)1×(67)2
=(23)×(23)×(√2√3)1×(67)2=16√249√3=√5127203=(5127203)12
Question 2:
Simplify:
(i) (16-1/5)5/2
(ii) 5√(32)-3
(iii) 3√(343)-2
(iv) (0.001)1/3
(v) (25)3/2×(243)3/5(16)5/4×(8)4/3
(vi) (√25)8 ÷ (√25)13
(vii) (5-1×7252×7-4)7/2 × (5-2×7353×7-5)-5/2
Answer 2:
(1) Given
By using law of rational exponents we have
Hence the value of is
(ii) 5√(32)-3
=5√(132)3=(132)35=(1(2)5)35=(12)5×35
=(12)3=(18)
(iii) Given
Hence the value of is
(iv) Given
The value of is
(v) Given
Hence the value of is
(vi) Given. So,
By using the law of rational exponents
Hence the value of is
(vii) Given . So,
Hence the value of is
Question 3:
Prove that:
(i) √3×5-3 ÷ 3√3-1 √5×6√3×56=35
(ii) 93/2-3×50-(181)-1/2 = 15
(iii) (14)-2-3×82/3×40+(916)-1/2 = 163
(iv) 21/2×31/3×41/410-1/5×53/5 ÷ 34/3×5-7/54-3/5×6=10
(v) √14 +(0.01)-1/2-(27)2/3 =32
(vi) 2n + 2n -12n+1-2n=32
(vii) (64125)-2/3 + 1(256625)1/4 + (√253√64) = 6516
(viii) 3-3×62×√9852×3√1/25×(15)-4/3×31/3=28√2
(ix) (0.6)0-(0.1)-1(38)-1(32)3+(-13)-1=-32
Answer 3:
(i) We have to prove that
By using rational exponent we get,
Hence,
(ii) We have to prove that. So,
Hence,
(iii) We have to prove that
Now,
Hence,
(iv) We have to prove that. So,
Let
Hence,
(v) We have to prove that
Let
Hence,
(vi) We have to prove that . So,
Let
Hence,
(vii) We have to prove that. So let
By taking least common factor we get
Hence,
(viii) We have to prove that. So,
Let
Hence,
(ix) We have to prove that. So,
Let
Hence,
Question 4:
Show that:
(i) 11+xa-b+11+xb-a=1
(ii) [{xa(a-b)xa(a+b)}÷{xb(b-a)xb(b+a)}]a+b=1
(iii) (x1a-b)1a-c(x1b-c)1b-a(x1c-a)1c-b=1
(iv) (xa2+b2xab)a+b(xb2+c2xbc)b+c(xc2+a2xac)a+c=x2(a3+b3+c3)
(v) (xa-b)a+b(xb-c)b+c(xc-a)c+a=1
(vi) {(xa-a-1)1a-1}aa+1=x
(vii) (ax+1ay+1)x+y(ay+2az+2)y+z(az+3ax+3)z+x=1
(viii) (3a3b)a+b(3b3c)b+c(3c3a)c+a=1
Answer 4:
(i)
11+xa-b+11+xb-a
=11+xaxb+11+xbxa=xbxb+xa+xaxa+xb=xb+xaxa+xb=1
(ii)
[{xa(a-b)xa(a+b)}÷{xb(b-a)xb(b+a)}]a+b=[{xa(a-b)xa(a+b)}×{xb(b+a)xb(b-a)}]a+b=[{xa2-abxa2+ab}×{xb2+abxb2-ab}]a+b
=[{xa2-ab-a2-ab}×{xb2+ab-b2+ab}]a+b=[x-2ab×x2ab]a+b=[x-2ab+2ab]a+b=[x0]a+b=1
(iii)
(x1a-b)1a-c(x1b-c)1b-a(x1c-a)1c-b=(x)1a-b×1a-c(x)1b-c×1b-a(x)1c-a×1c-b=(x)1a-b×1a-c+1b-c×1b-a+1c-a×1c-b=(x)(b-c)-(a-c)+(a-b)(a-b)(a-c)(b-c)=x0=1
(iv)
(xa2+b2xab)a+b(xb2+c2xbc)b+c(xc2+a2xac)a+c=(xa2+b2-ab)a+b(xb2+c2-bc)b+c(xc2+a2-ac)a+c=[x(a+b)(a2+b2-ab)][x(b+c)(b2+c2-bc)][x(a+c)(c2+a2-ac)]=(xa3+b3)(xb3+c3)(xa3+c3)=x2(a3+b3+c3)
(v)
(xa-b)a+b(xb-c)b+c(xc-a)c+a=[x(a-b)(a+b)][x(b-c)(b+c)][x(c-a)(c+a)]=x(a2-b2)x(b2-c2)x(c2-a2)=xa2-b2+b2-c2+c2-a2=x0=1
(vi)
{(xa-a-1)1a-1}aa+1={(xa-1a)1a-1×aa+1}={xa2-1a}aa2-1=xa2-1a×aa2-1=x1=x
(vii)
(ax+1ay+1)x+y(ay+2az+2)y+z(az+3ax+3)z+x=(ax+1-y-1)x+y(ay+2-z-2)y+z(az+3-x-3)z+x=(ax-y)x+y(ay-z)y+z(az-x)z+x=ax2-y2+y2-z2+z2-x2=a0=1
(viii)
(3a3b)a+b(3b3c)b+c(3c3a)c+a=(3a-b)a+b(3b-c)b+c(3c-a)c+a=3a2-b2+b2-c2+c2-a2=30=1
Question 5:
Question
Answer 5:
Let 2x=3y=12z=k
⇒2=k1x,3=k1y,12=k1z
Now,
12=k1z⇒22×3=k1z⇒(k1x)2×k1y=k1z⇒k2x+1y=k1z⇒2x+1y=1z
Question 6:
Question
Answer 6:
Let 2x=3y=6-z=k
⇒2=k1x, 3=k1y,6=k1-z
Now,
6=2×3=k1-z⇒k1x×k1y=k1-z⇒k1x+1y=k1-z⇒1x+1y=1-z⇒1x+1y+1z=0
Question 7:
Question
Answer 7:
Let ax=by=cz=k
So, a=k1x,b=k1y,c=k1z
Thus,
b2=ac⇒(k1y)2=(k1x)(k1z)⇒k2y=k1x+1z⇒2y=1x+1z
⇒2y=z+xxz⇒y=2zxz+x
Question 8:
Question
Answer 8:
Let 3x=5y=(75)z=k
⇒3=k1x, 5=k1y, 75=k1z⇒52×3=k1z⇒(k1y)2×k1x=k1z⇒k2y×k1x=k1z
⇒k2y+1x=k1z⇒2y+1x=1z⇒2x+yxy=1z⇒z=xy2x+y
Question 9:
If 27x =93x, find x.
Answer 9:
We are given. We have to find the value of
Since
By using the law of exponents we get,
On equating the exponents we get,
Hence,
Question 10:
Find the values of x in each of the following:
(i) 25x÷2x =5√220
(ii) (23)4=(22)x
(iii) (35)x (53)2x=12527
(iv) 5x-2×32x-3 =135
(v) 2x-7×5x-4=1250
(vi) (3√4)2x+12=132
(vii) 52x+3=1
(viii) (13)√x=44-34-6
(ix) (√35)x+1=12527
Answer 10:
From the following we have to find the value of x
(i) Given
By using rational exponents
On equating the exponents we get,
The value of x is
(ii) Given
On equating the exponents
Hence the value of x is
(iii) Given
Comparing exponents we have,
Hence the value of x is
(iv) Given
On equating the exponents of 5 and 3 we get,
And,
The value of x is
(v) Given
On equating the exponents we get
And,
Hence the value of x is
(vi) (3√4)2x+12=132
(22)13(4x+12)=(12)5⇒2(4x+13)=2-5
On comparing we get,
4x+13=-5⇒4x+1=-15⇒4x=-16⇒x=-4
(vii) 52x+3=1
52x+3=50⇒2x+3=0⇒x=-32
(viii) (13)√x=44-34-6
(13)√x=(22)4-34-6⇒(13)√x=28-34-6⇒(13)√x=256-81-6⇒(13)√x=169⇒(13)√x=(13)2
On comparing we get,
√x=2on squaring both sides we get, x=4
(ix) (√35)x+1=12527
(√35)x+1=(53)3⇒(35)x+12=(35)-3
On comparing we get,
x+12=-3⇒x+1=-6⇒x=-7
Question 11:
Question
Answer 11:
x=213+223
Cubing on both sides, we get
x3=(213+223)3⇒x3=(213)3+(223)3+3×213×223(213+223)⇒x3=2+22+3×21+23(x)⇒x3=2+4+3×2x⇒x3-6x=6
Question 12:
Question
Answer 12:
9x+2=240+9x
⇒9x×92=240+9x⇒9x(92-1)=240⇒9x(81-1)=240⇒9x×80=240⇒9x=3⇒32x=31⇒2x=1⇒x=12
∴(8x)x=(8×12)12=(4)12=2
Question 13:
Question
Answer 13:
3x+1=9x-2
⇒3x×3=9x92⇒3x×3=(32)x(32)2=32x34⇒34×3=32x3x⇒35=32x-x
⇒35=3x
Comparing both sides, we get
x = 5
So, 21+x=21+5=26=64
Question 14:
If 34x=(81)-1 and 101y=0.0001, find the value of 2-x+4y.
Answer 14:
It is given that 34x=(81)-1 and 101y=0.0001.
Now,
34x=(81)-1⇒34x=(34)-1⇒(3x)4=(3-1)4⇒x=-1
And,
101y=0.0001⇒101y=110000⇒101y=(110)4⇒101y=(10)-4⇒1y=-4⇒y=-14
Therefore, the value of 2-x+4y is 21+4(-14)=20=1.
Question 15:
If 53x=125 and 10y=0.001, find x and y.
Answer 15:
It is given that 53x=125 and 10y=0.001.
Now,
53x=125⇒53x=53⇒3x=3⇒x=1
And,
10y=0.001⇒10y=11000⇒10y=10-3⇒y=-3
Hence, the values of x and y are 1 and −3, respectively.
Question 16:
Solve the following equations:
(i) 3x+1=27×34
(ii) 42x=(3√16)-6y=(√8)2
(iii) 3x-1×52y-3=225
(iv) 8x+1=16y+2 and, (12)3+x=(14)3y
(v) 4x-1×(0.5)3-2x=(18)x
(vi) √ab=(ba)1-2x, where a and b are distinct primes
Answer 16:
(i)
3x+1=27×34⇒3x+1=33×34⇒3x+1=33+4⇒3x+1=37⇒x+1=7⇒x=6
(ii)
42x=(3√16)-6y=(√8)2⇒42x=(√8)2 and (3√16)-6y=(√8)2⇒42x=(812×2) and (1613×-6y)=(812×2) ⇒42x=8 and (16-2y)=8⇒24x=23 and (2-8y)=23⇒4x=3 and -8y=3⇒x=34 and y=-83
(iii)
3x-1×52y-3=225⇒3x-1×52y-3=3×3×5×5⇒3x-1×52y-3=32×52⇒x-1=2 and 2y-3=2⇒x=3 and y=52
(iv)
8x+1=16y+2 and, (12)3+x=(14)3y⇒(23)x+1=(24)y+2 and (12)3+x=(122)3y⇒(2)3x+3=(2)4y+8 and (12)3+x=(12)6y⇒3x+3=4y+8 and 3+x=6y
Now,
3+x=6y⇒x=6y-3
Putting x = 6y − 3 in 3x-4y=5, we get
3(6y-3)-4y=5⇒18y-9-4y=5⇒14y=14⇒y=1
Putting y = 1 in x=6y-3, we get
x=6×1-3=3
(v)
4x-1×(0.5)3-2x=(18)x⇒(22)x-1×(12)3-2x=(123)x⇒(2)2x-2×(2)-(3-2x)=(2)-3x⇒(2)2x-2-3+2x=(2)-3x⇒4x-5=-3x⇒7x=5⇒x=57
(vi)
√ab=(ba)1-2x⇒(ab)12=(ab)-(1-2x)⇒12=-(1-2x)⇒12=2x-1⇒32=2x⇒x=34
Question 17:
If a and b are distinct primes such that 3√a6b-4=axb2y, find x and y.
Answer 17:
Given: 3√a6b-4=axb2y
3√a6b-4=axb2y⇒(a6b-4)13=axb2y⇒a6×13b-4×13=axb2y⇒a2b-43=axb2y⇒x=2 and y=-23
Question 18:
If a and b are different positive primes such that
(i) (a-1b2a2b-4)7÷(a3b-5a-2b3)=axby, find x and y.
(ii) (a+b)-1(a-1+b-1)=axby, find x + y + 2.
Answer 18:
(i)
(a-1b2a2b-4)7÷(a3b-5a-2b3)=axby⇒(a-7b14a14b-28)÷(a3b-5a-2b3)=axby⇒(a-7-14b14+28)÷(a3+2b-5-3)=axby⇒(a-21b42)÷(a5b-8)=axby⇒a-21-5b42+8=axby⇒a-26b50=axby⇒x=-26 and y=50
(ii)
(a+b)-1(a-1+b-1)=axby⇒1(a+b)(1a+1b)=axby⇒1(a+b)(a+bab)=axby⇒(1ab)=axby⇒(ab)-1=axby⇒a-1b-1=axby⇒x=-1 and y=-1
Therefore, the value of x + y + 2 is −1 −1 + 2 = 0.
Question 19:
If 2x×3y×5z=2160, find x , y and z. Hence, compute the value of 3x×2-y×5-z.
Answer 19:
Given: 2x×3y×5z=2160
First, find out the prime factorisation of 2160.
2216021080254022703135345315551
It can be observed that 2160 can be written as 24×33×51.
Also,
2x×3y×5z=24×33×51⇒x=4, y=3, z=1
Therefore, the value of 3x×2-y×5-z is 34×2-3×5-1=81×18×15=8140.
Question 20:
If 1176=2a×3b×7c, find the values of a, b and c. Hence, compute the value of 2a×3b×7-c as a fraction.
Answer 20:
First find the prime factorisation of 1176.
21176258822943147749771
It can be observed that 1176 can be written as 23×31×72.
1176=2a3b7c=233172
So, a = 3, b = 1 and c = 2.
Therefore, the value of 2a×3b×7-c is 23×31×7-2=8×3×149=2449
Question 21:
Simplify:
(i) (xa+bxc)a-b(xb+cxa)b-c(xc+axb)c-a
(ii) lm√xlxm×mn√xmxn×nl√xnxl
Answer 21:
(i)
(xa+bxc)a-b(xb+cxa)b-c(xc+axb)c-a=(x(a+b)(a-b)xc(a-b))(x(b+c)(b-c)xa(b-c))(x(c+a)(c-a)xb(c-a))=(x(a+b)(a-b)xca-bc)(x(b+c)(b-c)xab-ac)(x(c+a)(c-a)xbc-ab)=(x(a2-b2)x(b2-c2)x(c2-a2)xca-bc+ab-ac+bc-ab)=xa2-b2+b2-c2+c2-a2xca-bc+ab-ac+bc-ab=x0x0=1
(ii)
lm√xlxm×mn√xmxn×nl√xnxl=(xlxm)1ml×(xmxn)1mn×(xnxl)1nl=(xl-m)1ml×(xm-n)1mn×(xn-l)1nl=xl-mml×xm-nmn×xn-lnl=xl-mml+m-nmn+n-lnl=xln-mn+lm-nl+nm-lmnml=x0=1
Question 22:
Show that: (a+1b)m×(a-1b)n(b+1a)m×(b-1a)n=(ab)m+n
Answer 22:
(a+1b)m×(a-1b)n(b+1a)m×(b-1a)n=(ab+1b)m×(ab-1b)n(ab+1a)m×(ab-1a)n=(ab+1bab+1a)m×(ab-1bab-1a)n=(ab+1b×aab+1)m×(ab-1b×aab-1)n=(ab)m×(ab)n=(ab)m×(ab)n=(ab)m+n
Question 23:
(i) If a=xm+nyl, b=xn+lym and c=xl+myn, prove that am-nbn-lcl-m=1.
(ii) If x=am+n, y=an+l and z=al+m, prove that xmynzl=xnylzm.
Answer 23:
(i) Given: a=xm+nyl, b=xn+lym and c=xl+myn
Putting the values of a, b and c in am-nbn-lcl-m, we get
am-nbn-lcl-m=(xm+nyl)m-n(xn+lym)n-l(xl+myn)l-m=[x(m+n)(m-n)yl(m-n)][x(n+l)(n-l)ym(n-l)][x(l+m)(l-m)yn(l-m)]=x(m2-n2)x(n2-l2)x(l2-m2)ylm-lnymn-mlynl-nm=xm2-n2+n2-l2+l2-m2ylm-ln+mn-ml+nl-nm=x0y0=1
(ii) Given: x=am+n, y=an+l and z=al+m
Putting the values of x, y and z in xmynzl, we get
xmynzl=(am+n)m(an+l)n(al+m)l=(am2+nm)(an2+ln)(al2+lm)=am2+n2+l2+nm+ln+lm
Putting the values of x, y and z in xnylzm, we get
xnylzm=(am+n)n(an+l )l(al+m)m=(amn+n2)(anl+l2 )(alm+m2)=amn+n2+nl+l2+lm+m2
So, xmynzl = xnylzm
No comments:
Post a Comment