Exercise 2.1
Page-2.12Question 1:
Simplify the following:
(i) 3(a4b3)10×5(a2b2)3
(ii) (2x-2y3)3
(iii) (4×107)(6×10-5)8×104
(iv) 4ab2(-5ab3)10a2b2
(v) (x2y2a2b3)n
(vi) (a3n-9)6a2n-4
Answer 1:
(i)
3(a4b3)10×5(a2b2)3=3×a40×b30×5×a6×b6=15×a40×a6×b30×b6=15×a40+6×b30+6 [am×an=am+n]=15a46b36
(ii)
(2x-2y3)3=23×(x-2)3×(y3)3=8×x-6×y9=8x-6y9
(iii)
(4×107)(6×10-5)8×104=4×107×6×10-58×104=24×107+(-5)8×104=24×1028×104
=24×102×10-48=3×102+(-4)=3×10-2=3100
(iv)
4ab2(-5ab3)10a2b2=4×a×b2×(-5)×a×b310a2b2=-20×a1×a1×b2×b310a2b2
=-20×a1+1×b2+310a2b2=-2×a2×b5×a-2×b-2=-2×a2+(-2)×b5+(-2)=-2×a0×b3=-2b3
(v)
(x2y2a2b3)n=(x2)n(y2)n(a2)n(b3)n=x2ny2na2nb3n
(vi)
(a3n-9)6a2n-4=a6(3n-9)a2n-4=a(18n-54)a2n-4
=a(18n-54)×a-(2n-4)=a18n-54×a-2n+4=a18n-54-2n+4=a16n-50
Question 2:
If a=3 and b=-2, find the values of:
(i) aa+bb
(ii) ab+ba
(iii) (a+b)ab
Answer 2:
(i) aa+bb
Here, a=3 and b=-2.
Put the values in the expression aa+bb.
33+(-2)-2=27+1(-2)2=27+14=108+14=1094
(ii) ab+ba
Here, a=3 and b=-2.
Put the values in the expression ab+ba.
3-2+(-2)3=(13)2+(-8)=19-8=1-729=-719
(iii) (a+b)ab
Here, a=3 and b=-2.
Put the values in the expression (a+b)ab.
[3+(-2)]3(-2)=(1)-6=1
Question 3:
Prove that:
(i) (xaxb)a2+ab+b2×(xbxc)b2+bc+c2×(xcxa)c2+ca+a2=1
(ii) (xaxb)c×(xbxc)a×(xcxa)b=1
Answer 3:
(i) (xaxb)a2+ab+b2×(xbxc)b2+bc+c2×(xcxa)c2+ca+a2=1
Consider the left hand side:
(xaxb)a2+ab+b2×(xbxc)b2+bc+c2×(xcxa)c2+ca+a2=xa(a2+ab+b2)xb(a2+ab+b2)×xb(b2+bc+c2)xc(b2+bc+c2)×xc(c2+ca+a2)xa(c2+ca+a2)=xa(a2+ab+b2)-b(a2+ab+b2)×xb(b2+bc+c2)-c(b2+bc+c2)×xc(c2+ca+a2)-a(c2+ca+a2)=x(a-b)(a2+ab+b2)×x(b-c)(b2+bc+c2)×x(c-a)(c2+ca+a2)=x(a3-b3)×x(b3-c3)×x(c3-a3)=x(a3-b3+b3-c3+c3-a3)=x0=1
Left hand side is equal to right hand side.
Hence proved.
(ii) (xaxb)c×(xbxc)a×(xcxa)b=1
Consider the left hand side:
=xacxbc×xbaxca×xcbxab=xacxbc×xbaxca×xcbxab=xac×xba×xcbxbc×xca×xab=xac+ba+cbxbc+ca+ab=1
Left hand side is equal to right hand side.
Hence proved.
Question 4:
Prove that:
(i) 11+xa-b+11+xb-a=1
(ii) 11+xb-a+xc-a+11+xa-b+xc-b+11+xb-c+xa-c=1
Answer 4:
(i) Consider the left hand side:
11+xa-b+11+xb-a=11+xaxb+11+xbxa=1xb+xaxb+1xa+xbxa=xbxb+xa+xaxa+xb=xb+xaxb+xa=1
Therefore left hand side is equal to the right hand side. Hence proved.
(ii)
Consider the left hand side:
11+xb-a+xc-a+11+xa-b+xc-b+11+xb-c+xa-c=11+xbxa+xcxa+11+xaxb+xcxb+11+xbxc+xaxc=1xa+xb+xcxa+1xb+xa+xcxb+1xc+xb+xcxc=xaxa+xb+xc+xbxb+xa+xc+xcxc+xb+xc=xa+xb+xcxa+xb+xc=1
Therefore left hand side is equal to the right hand side. Hence proved.
Question 5:
Prove that:
(i) a+b+ca-1b-1+b-1c-1+c-1a-1=abc
(ii) (a-1+b-1)-1=aba+b
Answer 5:
(i) Consider the left hand side:
a+b+ca-1b-1+b-1c-1+c-1a-1=a+b+c1ab+1bc+1ca=a+b+cc+a+babc=(a+b+c)×(abca+b+c)=abc
Therefore left hand side is equal to the right hand side. Hence proved.
(ii)
Consider the left hand side:
(a-1+b-1)-1=1a-1+b-1=11a+1b=1b+aab=aba+b
Therefore left hand side is equal to the right hand side. Hence proved.
Question 6:
If abc = 1, show that 11+a+b-1+11+b+c-1+11+c+a-1=1.
Answer 6:
Consider the left hand side:
11+a+b-1+11+b+c-1+11+c+a-1=11+a+1b+11+b+1c+11+c+1a=1b+ab+1b+11+b+ab+11+1ab+1a (abc=1)=bb+ab+1+11+b+ab+abab+1+b=b+1+abb+ab+1=1
Hence proved.
Question 7:
Simplify the following:
(i) 3n×9n+13n-1×9n-1
(ii) 5×25n+1-25×52n5×52n+3-25n+1
(iii) 5n+3-6×5n+19×5x-22×5n
(iv) 6(8)n+1+16(2)3n-210(2)3n+1-7(8)n
Answer 7:
(i)
3n×9n+13n-1×9n-1=3n×(32)(n+1)3n-1×(32)n-1=3n×32n+23n-1×32n-2
=3n+2n+23n-1+2n-2=33n+233n-3=33n+2-3n+3=35=243
(ii)
5×25n+1-25×52n5×52n+3-25n+1=5×(52)n+1-(52)×52n5×52n+3-(52)n+1=5×(52n+2)-(52)×52n5×52n+3-(52n+2)=51+2n+2-52+2n51+2n+3-52n+2
=52n+3-52+2n52n+4-52n+2=52+2n(5-1)52n+2(52-1)=424=16
(iii)
5n+3-6×5n+19×5n-22×5n=5n+1(52-6)5n(9-22)=5n×5×(25-6)5n(9-4)=5×195=19
(iv)
6(8)n+1+16(2)3n-210(2)3n+1-7(8)n=6(23)n+1+16(2)3n-210(2)3n+1-7(23)n=6(23n+3)+16(2)3n-210(2)3n+1-7(23n)
=6×23n(23)+16(2)3n2-210(2)3n(21)-7(23n)=23n(48+4)23n(20-7)=5213=4
Question 8:
Solve the following equations for x:
(i) 72x+3=1
(ii) 2x+1=4x-3
(iii) 25x+3=8x+3
(iv) 42x=132
(v) 4x-1×(0.5)3-2x=(18)x
(vi) 23x-7=256
Answer 8:
(i)
72x+3=1⇒72x+3=70⇒2x+3=0⇒2x=-3⇒x=-32
(ii)
2x+1=4x-3⇒2x+1=(22)x-3⇒2x+1=(22x-6)⇒x+1=2x-6⇒x=7
(iii)
25x+3=8x+3⇒25x+3=(23)x+3⇒25x+3=23x+9⇒5x+3=3x+9⇒2x=6⇒x=3
(iv)
42x=132⇒(22)2x=125⇒24x×25=1⇒24x+5=20⇒4x+5=0⇒x=-54
(v)
4x-1×(0.5)3-2x=(18)x⇒(22)x-1×(12)3-2x=(123)x⇒(22)x-1×(2-1)3-2x=(2-3)x⇒22x-2×22x-3=2-3x⇒22x-2+2x-3=2-3x⇒24x-5=2-3x⇒4x-5= -3x⇒7x= 5⇒x= 57
(vi)
23x-7=256⇒23x-7=28⇒3x-7=8⇒3x=15⇒x=5
Question 9:
Solve the following equations for x:
(i) 22x-2x+3+24=0
(ii) 32x+4+1=2.3x+2
Answer 9:
(i)
22x-2x+3+24=0⇒(2x)2-(2x×23)+(22)2=0⇒(2x)2-2×2x×22+(22)2=0⇒(2x-22)2=0⇒2x-22=0⇒2x=22⇒x=2
(ii)
32x+4+1=2.3x+2⇒(3x+2)2-2.3x+2+1=0⇒(3x+2-1)2=0⇒3x+2-1=0⇒3x+2=1=30⇒x+2=0⇒x=-2
Question 10:
If 49392=a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Answer 10:
First find out the prime factorisation of 49392.
2493922246962123482617433087310297343749771
It can be observed that 49392 can be written as 24×32×73, where 2, 3 and 7 are positive primes.
∴49392=243273=a4b2c3⇒a=2, b=3, c=7
Question 11:
If 1176=2a3b7c, find a, b and c.
Answer 11:
First find out the prime factorisation of 1176.
21176258822943147749771
It can be observed that 1176 can be written as 23×31×72.
1176=233172=2a3b7c
Hence, a = 3, b = 1 and c = 2.
Question 12:
Given 4725=3a5b7c, find
(i) the integral values of a, b and c
(ii) the value of 2-a3b7c
Answer 12:
(i) Given 4725=3a5b7c
First find out the prime factorisation of 4725.
347253157535255175535771
It can be observed that 4725 can be written as 33×52×71.
∴4725=3a5b7c=335271
Hence, a = 3, b = 2 and c = 1.
(ii)
When a = 3, b = 2 and c = 1,
2-a3b7c=2-3×32×71=18×9×7=638
Hence, the value of 2-a3b7c is 638.
Question 13:
If a=xyp-1,b=xyq-1 and c=xyr-1, prove that aq-rbr-pcp-q=1.
Answer 13:
It is given that a=xyp-1,b=xyq-1 and c=xyr-1.
∴aq-rbr-pcp-q=(xyp-1)q-r(xyq-1)r-p(xyr-1)p-q=x(q-r)y(p-1)(q-r)x(r-p)y(r-p)(q-1)x(p-q)y(p-q)(r-1)=x(q-r)x(r-p)x(p-q)y(p-1)(q-r)y(r-p)(q-1)y(p-q)(r-1)=x(q-r)+(r-p)+(p-q)y(p-1)(q-r)+(r-p)(q-1)+(p-q)(r-1)=xq-r+r-p+p-qypq-q-pr+r+rq-r-pq+p+pr-p-qr+q=x0y0=1
No comments:
Post a Comment