RD Sharma 2020 solution class 9 chapter 15 Circles FBQS

FBQS

Page-15.110

Question 1:

Fill In The Blanks 

AD is a diameter, ,of circle and AB is chord. If AD = 34 cm, AB = 30 cm, then BD = ____________

Answer 1:

Given:
AD is a diameter
AB is chord
AD = 34 cm
AB = 30 cm


Let O be the centre of the circle.
AO = OD = 17 cm            ...(1)

Let OL is a line perpendicular to AB, where L is the point on AB.
Then, AL = LB = 15 cm              ...(2) (∵ a perpendicular from the centre of the circle to the chord, bisects the chord)

In ∆ALO,
Using pythagoras theorem,
AL2 + LO2 = AO2
⇒ 152LO2 = 172        (From (1) and (2))
⇒ 225 + LO2 = 289
⇒ LO2 = 289 − 225
⇒ LO2 = 64
⇒ LO = 8 cm

Now, In ∆ABD,
Using mid-point theorem: The line segment joining the mid-points of two sides of a triangle is parallel to the third side and is equal to the half of it.
Therefore, LO = 12BD
BD = 2LO
⇒ BD = 2(8)
⇒ BD = 16 cm​


Hence, BD = 16 cm.

Question 2:

Fill In The Blanks 

AD is a diameter of a circle and AB is a chord. If AD = 34 cm, AB = 30cm, then the distance of AB from the centre of the circle is ________.

Answer 2:

Given:
AD is a diameter
AB is chord
AD = 34 cm
AB = 30 cm


Let O be the centre of the circle.
AO = OD = 17 cm            ...(1)

Let OL is a line perpendicular to AB, where is the point on AB.
Then, AL = LB = 15 cm              ...(2) (∵ a perpendicular from the centre of the circle to the chord, bisects the chord)

In ∆ALO,
Using pythagoras theorem,
AL2 + LO2 = AO2
⇒ 152 + LO2 = 172        (From (1) and (2))
⇒ 225 + LO2 = 289
⇒ LO2 = 289 − 225
⇒ LO2 = 64
⇒ LO = 8 cm

Thus, the distance of the chord from the centre is 8 cm.


Hence, the distance of AB from the centre of the circle is 8 cm.

Question 3:

Fill In The Blanks 

If AB = 12 cm, BC = 16 cm, and AB is perpendicular to BC, then the radius of the circle passing through the points A,B and C is _________.

Answer 3:

Given:
AB = 12 cm
BC = 16 cm
AB is perpendicular to BC


Since, AB is perpendicular to BC
Therefore, the circle formed by joining AB and C is a circle with diameter AC.

In ∆ABC,
Using pythagoras theorem,
AB2 + BC2 = AC2
⇒ 122 + 162 = AC2       (given)
⇒ 144 + 256 =  AC2
⇒ AC2= 400
⇒ AC = 20

Thus, the diameter of the circle is 20 cm.
Therefore, the radius of the circle is half of the diameter of the circle.
Radius = 1220 =10 cm

Hence, the radius of the circle passing through the points AB and C is 10 cm.

Question 4:

Fill In The Blanks 

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscibing it  and ∠ADC = 140 ,then  BAC = ________. 

Answer 4:

Given:
ABCD is a cyclic quadrilateral
AB is a diameter of the circle circumscribing ABCD
ADC = 140


In a cyclic quadrilateral, the sum of opposite angles is 180.


Thus, ∠ADC + ∠ABC = 180°
⇒ 140° + ∠ABC = 180°
⇒ ∠ABC = 180° − 140°
⇒ ∠ABC = 40°     ...(1)

Since AB is the diameter of the circle
Therefore, ∠ACB = 90°  (angle in the semi circle)    ...(2)

In ∆ABC,
BAC + ACB + ABC = 180° (angle sum property)
⇒ ∠BAC + 90°40° = 180° (From (1) and (2))
⇒ ∠BAC + 130° = 180°
⇒ ∠BAC = 180° − 130°
⇒ ∠BAC = 50°


Hence, ∠BAC =  50°.

Question 5:

Fill In The Blanks 

Two chords AB and CD of a circle are each at a distance of 6 cm from the centre. the ratio of their lengths is ________.

Answer 5:

Given:
Two chords AB and CD of a circle are each at a distance of 6 cm from the centre.


The chords which are equidistant from the centre of the circle are of equal length.

Hence, the ratio of their length is 1 : 1.

Page-15.111

Question 6:

Fill In The Blanks 

If two equals chords AB and AC of a circle with centre O are on the opposite sides of OA, then ∠OAB = ____________ .

Answer 6:

Given:
AB =AC
AB and AC lies on the opposite sides of OA


The chords of equal length, are equidistant from the centre of the circle.

In ∆OAB and ∆OAC,
AB = AC (given)
OA = OA (common)
OB = OC (radius of the circle)

By SSS property,
OAB ≅ ∆OAC

Therefore, ∠OAB = OAC (by C.P.C.T.)

Hence, ∠OAB = OAC.

Question 7:

Fill In The Blanks 

Two congruent circle with centres O and O' intesect at two points P and Q. then then, POQ :∠PO'Q = ____________.

Answer 7:

Given:
Two congruent circle with centres O and O' intersect at two points P and Q.


In ∆OPQ and ∆O'PQ,
OP = O'P (radius)
PQ = PQ (common)
OQ = O'Q (radius)

By SSS property,
OPQ ≅ ∆O'PQ

Therefore, ∠POQ = PO'Q (by C.P.C.T.)

Hence, ∠POQ : ∠PO'Q = 1 : 1.

Question 8:

Fill In The Blanks 

If AOB is a diameter of a circle and C is a point on the circle, then the AC2 + BC2  = ____________.

Answer 8:

Given:
AOB is a diameter of a circle
C is a point on the circle

Since, AOB is the diameter of the circle
Therefore, ∠ACB = 90°  (angle in the semi circle)    ...(2)

In right angled ∆ABC,
Using pythagoras theorem.
AC2 + BC2 = AB2


Hence, AC2 + BC2  AB2.

Question 9:

Fill In The Blanks 

If O is the circumcentre of  ΔABC and D is the mid-point of the base BC, then ∠BOD = _______________.

Answer 9:

Given:
O is the circumcentre of ∆ABC
D is the mid-point of the base BC

In ∆BOD and ∆COD,
OB = OC (radius)
BD = CD (D is the mid-point of the base BC)
OD = OD (common)

By SSS property,
BOD ≅ ∆COD

Therefore, ∠BOD = COD (by C.P.C.T.)
⇒ BOC = BOD + COD
⇒ 
BOC = 2∠BOD      ..(1)

We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠BOC = 2∠BAC
2∠BOD = 2∠BAC
⇒ 
BOD = BAC


Hence, ∠BOD = BAC.

Question 10:

Fill In The Blanks 

If O is the circumcentre of  ΔABC, then ∠OBC + ∠BAC = __________.

Answer 10:

Given:
O is the circumcentre of ∆ABC


We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠BOC = 2∠BAC     ...(1)


In ∆OBC ,
OB = OC (radius)
Thus, OBC = OCB       ...(2)

Also, ∠OBC + OCB + BOC = 180° (angle sum property)
2∠OBC + 2∠BAC = 180°     (from (1) and (2))
⇒ OBC + BAC = 90°

Hence, ∠OBC + BAC = 90°.

Question 11:

Fill In The Blanks 

A chord of a circle is equal to its radius. The angle subtended by this chord at a point in major segment is ___________.    

Answer 11:

Given:
A chord of a circle is equal to its radius

Let AB is a chord and O is the centre of the circle.

AB = OA = OB (∵ Chord is equal to the radius)
⇒ ∆ABO is equilateral triangle

Thus, ∠AOB = 60°     ...(1)


We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠AOB = 2∠ADB , where D is any point on the major segment of the circle
⇒ 2∠ADB = 60°     (from (1) and (2))
⇒ ADB = 30°

Hence, the angle subtended by the chord at a point in major segment is 30°.

Question 12:

Fill In The Blanks 

If a pair of opposite sides of  a quadrilateral are equal, then its diagonals are ___________..

Answer 12:

Given:
A pair of opposite sides of a quadrilateral ABCD are equal.
i.e., AB = CD and AD = BD

Then, the quadrilateral can be a parallelogram, a rectangle, rhombus or a square.
In all the cases the diagonals bisects each other.

Hence, its diagonals are bisecting.

Question 13:

Fill In The Blanks 

If arcs AXB and CYD of a circle are congruent, then AB : CD = ___________.

Answer 13:

Given:
Arcs AXB and CYD of a circle are congruent

We know, if any two arcs are congruent, then their corresponding chords are equal.
Thus, Chord AB = Chord CD

Hence, AB : CD = 1 : 1.

Question 14:

A, B and C are three points on a circle, then the perpendicular bisector of AB, BC and CA are ____________.

Answer 14:

Given:
A, B and C are three points on a circle


Let ABC be a triangle.
We know, a circumcentre is the point of intersection of the perpendicular bisectors of the triangle.

Thus, the perpendicular bisector of ABBC and CA intersect at a point known as circumcentre.

Hence, the perpendicular bisector of ABBC and CA are concurrent.

Question 15:

Fill In The Blanks 

If AB and AC are equal chords of a circle, then the biesector of BAC passes through the ___________.

Answer 15:

Given:
AB and AC are equal chords of a circle


Let O be the centre of the circle.

In ∆OAB and ∆OAC,
AB = AC (given)
OA = OA (common)
OB = OC (radius of the circle)

By SSS property,
OAB ≅ ∆OAC

Therefore, ∠OAB = OAC (by C.P.C.T.)

Thus, ∠BAC = 2∠OAB.

Hence, the bisector of ∠BAC passes through the centre.

Question 16:

Fill In The Blanks 

ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D. If  CBD + ∠CDB = k ∠BAD, then k = _______.

Answer 16:

Given:
ABCD is such a quadrilateral such that A is the centre of the circle passing through BC and D
CBD + CDB = kBAD


We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠CAD = 2∠CBD      ...(1)
Also,  ∠CAB = 2∠CDB      ...(2)

Adding (1) and (2), we get
CAD + CAB 2∠CBD + 2∠CDB
⇒ 
BAD = 2∠CBD + 2∠CDB
⇒ 
BAD = 2(∠CBD + CDB)
⇒ CBD + CDB = 12BAD

Hence, k = 12.

Question 17:

Fill In The Blanks 

Two chords AB and AC of a circle are on the opposite sides of the centre. If AB and AC subtend angles equal to 90 and 150 respectively at the centre, then BAC = _________.
 

Answer 17:

Given:
AB and AC subtend angles equal to 90° and 150° respectively at the centre
i.e., ∠AOB = 90° and ∠AOC = 150°     ...(1)

In ∆AOB,
OA = OB (radius)
∴ ∠OBA = OAB (angles opposite to equal sides are equal)    ...(2)

Now, ∠OBA + OAB + AOB = 180° (angle sum property)    
 2∠OAB +  90° = 180°           (From (1) and (2))
 2∠OAB = 180° − 90°
 2∠OAB = 90°
 ∠OAB = 45°         ...(3)


In ∆AOC,
OA = OC (radius)
∴ ∠OCA = OAC (angles opposite to equal sides are equal)    ...(4)

Now, ∠OCA + OAC + AOC = 180° (angle sum property)    
 2∠OAC +  150° = 180°           (From (1) and (4))
 2∠OAC = 180° − 150°
 2∠OAC = 30°
 ∠OAC = 15°         ...(5)


Thus,
BAC = OAC OAB 
⇒ 
BAC = 15° + 45°               (From (3) and (5))
⇒ BAC = 60°

Hence, ∠BAC = 60°.

Question 18:

Fill In The Blanks 

Two congruent circles have centres at O and O'. Arc AXb of circle centred at O, subtends an angle of 75 at the centre O and arc PYQ ( or circle centred at O') subtends an angle 25 at the centre O'. The ratio of the arcs AXB and PYQ is ___________.

Answer 18:

Given:
O and O' are the centres of two congruent circles
AXB of circle centred at O, subtends an angle of 75 at the centre 
arc PYQ of circle centred at O' ,subtends an angle 25at the centre O'



Since, the circles are congruent
Therefore, they have same radius of measure r cm.      ...(1)

We know, Length of arc = θ360°×2πr

Thus,
Length of arc AXB=75°360°×2πr     ...2Length of arc PYQ=25°360°×2πr     ...3Length of arc AXBLength of arc PYQ=75°360°×2πr25°360°×2πr                             =75°25°                             =31


Hence, the ratio of the arcs AXB and PYQ is 3 : 1.

Question 19:

In the given figure, AB and CD are two equal chords of a circle with centre O. OP and OQ are perpendicular on chords AB and CD, respectively. If  POQ = 150, then ∠APQ = __________.

Answer 19:

Given:
AB = CD
OP  AB and OQ ⊥ CD
POQ = 150°     ...(1)


In ∆POQ,
OP = OQ (equal chords are equidistant from the centre)
∴ ∠OPQ = OQP (angles opposite to equal sides are equal)    ...(2)

Now, ∠OPQ + OQP + POQ = 180° (angle sum property)    
 2∠OPQ +  150° = 180°           (From (1) and (2))
 2∠OPQ = 180° − 150°
 2∠OPQ = 30°
 ∠OPQ = 15°         ...(3)


Since, OP  AB
Thus, ∠OPA = 90°     ....(4)


Now, ∠OPA = OPQ + APQ     
 90° = 15° APQ          (From (3) and (4))
 ∠APQ = 90° − 15°
 ∠APQ = 75°


Hence, ∠APQ = 75°.

Question 20:

In the given figure, if OA = 5cm, AB = 8 cm and OD is perpendicular to AB, then CD is equal to _______.

Answer 20:

Given:
OA = 5cm        ...(1)
AB = 8 cm
OD is perpendicular to AB


We know, perpendicular from the centre to the chord bisects the chord.
Therefore, AC = CB12AB
AC = 4 cm     ...(2)


In right angled ∆OAC,
Using pythagoras theorem
OA2 = AC2 + OC2
⇒ 52 = 4OC2    (From (1) and (2))
⇒ 25 = 16 OC2
OC2 = 25 − 16
⇒ OC2 = 9
⇒ OC = 3 cm


OD = 5 cm (radius)
CD = OD − OC
⇒ CD = 3
⇒ CD = 2 cm


Hence, CD is equal to 2 cm.

Page-15.112

Question 21:

In the given figure, if ∠ABC = 20∘ , then ∠AOC is equal to ____________.

Answer 21:

Given:
ABC = 20°        ...(1)


We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠AOC = 2∠ABC
⇒ 
AOC = 2(20°)     (From (1))
⇒ AOC = 40°


Hence, ∠AOC is equal to 40°.

Question 22:

In the given figure, if AOB is a diameter of the circle and AC = BC, then ∠CAB is equal to ____________.

Answer 22:

Given:
AOB is a diameter of the circle
AC = BC


We know, the diameter subtends a right angle to any point on the circle.
∴ ∠ACB = 90°      ...(1)

In ∆ACB,
AC = BC (given)
∴ ∠CAB = CBA (angles opposite to equal sides are equal)    ...(2)

Now,
CAB + CBA + ACB = 180° (angle sum property)
⇒ 2∠CAB +  90° 180°   (From (1) and (2))
⇒ 2∠CAB 180° −  90°
⇒ 2∠CAB 90°
⇒ ∠CAB 45°


Hence, ∠CAB is equal to 45°.

Question 23:

In the given figure,∠AOB = 90° and ∠ABC = 30° , then ∠CAO is equal to ___________.

Answer 23:

Given:
AOB = 90°      ...(1)
ABC = 30°      ...(2)

We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠AOB = 2∠ACB
⇒ 90° = 2∠ACB
⇒ ∠ACB = 45°    ...(3)


In ∆ACB,
CAB + CBA + ACB = 180° (angle sum property)
⇒ ∠CAB + 30° + 45° 180°   (From (2) and (3))
⇒ ∠CAB + 75°180°
⇒ ∠CAB 180° −  75°
⇒ ∠CAB 105°    ...(4)

Also, in ∆OAB,
OA = OB
∴ ∠OAB = OBA (angles opposite to equal sides are equal)    ...(5)

Now,
OAB + OBA + AOB = 180° (angle sum property)
⇒ 2∠OAB +  90° 180°   (From (1) and (5))
⇒ 2∠OAB 180° −  90°
⇒ 2∠OAB 90°
⇒ ∠OAB 45°  ...(6)


​∠CAO = CAB  OAB
           =
105° − 45° (From (4) and (6))
           = 60°

Hence, ∠CAO is equal to 60°.

Question 24:

In the given figure, if ∠OAB = 40∘ , then ∠ACB = ____________

Answer 24:

Given:
OAB = 40°      ...(1)


In ∆OAB,
OA = OB
∴ ∠OAB = OBA = 40° (angles opposite to equal sides are equal)    ...(2)

Now,
OAB + OBA + AOB = 180° (angle sum property)
⇒ 40° + 40°AOB 180°   (From (1) and (2))
⇒ ∠AOB = 180° −  80°
⇒ ∠AOB = 100°  ...(3)


We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠AOB = 2∠ACB
⇒ 100° = 2∠ACB    (From (3))
⇒ ∠ACB = 50°


Hence, ∠ACB50°.

Question 25:

In the given figure,, if ∠DAB = 60∘ , ∠ABD = 50∘ , then ∠ACB = _________

Answer 25:

Given:
DAB = 60°      ...(1)
ABD = 50°      ...(2)


In ∆ADB,
DAB + DBA + ADB = 180° (angle sum property)
⇒ 60° + 50° + ADB 180°   (From (1) and (2))
⇒ ∠ADB = 180° −  110°
⇒ ∠ADB = 70°  ...(3)


We know, angles in the same segment of the circle are equal.
Thus, ∠ADB = ACB
⇒ 70° = ACB    (From (3))
⇒ ∠ACB = 70°


Hence, ∠ACB = 70°.

Question 26:

In the given figure,, BC is a diameter of circle and ∠BAO = 60∘ . Then, ∠ADC = __________.

Answer 26:

Given:
BC is a diameter of circle
BAO = 60°      ...(1)

In ∆OAB,
OA = OB
∴ ∠OAB = OBA = 60° (angles opposite to equal sides are equal)    ...(2)

Also,
AOC = OAB + OBA (exterior angle)
⇒ ∠AOC = 60° + 60° (From (2))
⇒ ∠AOC = 120°    ...(3)

We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠AOC = 2∠ADC
⇒ 120° = 2∠ADC    (From (3))
⇒ ∠ADC = 60°


Hence, ∠ADC = 60°.

Page-15.113

Question 27:

In the given figure, if AOB is a diameter and ∠ADC = 120° , then ∠CAB = ___________

Answer 27:

Given:
AOB is a diameter of circle
ADC = 120°

Quadrilateral ADCB is a cyclic quadrilateral.

In a cyclic quadrilateral, the sum of opposite angles is 180.


Thus, ∠ADC + ∠CBA = 180°
⇒ 120° + ∠CBA = 180°
⇒ ∠CBA = 180° − 120°
⇒ ∠CBA = 60°     ...(1)

We know, the diameter subtends a right angle to any point on the circle.
∴ ∠ACB = 90°      ...(2)


In ∆ACB,
CAB + CBA + ACB = 180° (angle sum property)
⇒ ∠CAB + 60° + 90° 180°   (From (1) and (2))
⇒ ∠CAB = 180° −  150°
⇒ ∠CAB = 30°  ...(3)

Hence, ∠CAB = 30°.

Question 28:

In the given figure, if AOC is a diameter of the circle and AXB12 are BYC, then ∠BOC = __________.

Answer 28:

Given:
AOC is a diameter of circle
arc AXB = 12 arc BYC
⇒ 
 ∠BOA =  12BOC   ..(1)


Now, ∠BOA + ∠BOC = 180°      (Angles on a straight line)
⇒ 12BOC + ∠BOC = 180°      (From (1))
⇒ 32BOC = 180°  
⇒ ∠BOC = 23×180°
⇒ ∠BOC = 120°


Hence, ∠BOC = 120°.

Question 29:

In the given figure, ∠ABC = 45 , then  ∠AOC = _________.

Answer 29:

Given:
ABC = 45   ..(1)


We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠AOC = 2∠ABC
⇒ ∠AOC = 2(45°)       (From (1))
⇒ ∠AOC = 90°


Hence, ∠AOC = 90°.

Question 30:

In the given figure, if  ∠ADC = 130 and chord BC = chord BE, then ∠CBE = _______.

Answer 30:

Given:
ADC = 130     ...(1)
chord BC = chord BE       ...(2)


Quadrilateral ADCB is a cyclic quadrilateral.

In a cyclic quadrilateral, the sum of opposite angles is 180.
Thus, ∠ADC + ∠CBA = 180°
⇒ 130° + ∠CBA = 180°
⇒ ∠CBA = 180° − 130°
⇒ ∠CBA = 50°     ...(3)


In ∆CBO and ∆EBO,
BC = BE (given)
OB = OB (common)
OC = OE (radius of the circle)

By SSS property,
OCB ≅ ∆OEB

Therefore, ∠OBC = OBE = 50° (by C.P.C.T.)    ...(4)

Thus, ∠CBE = OBE + OBC
                     = 
50° + 50°      (From (4))
                     = 100°


Hence, ∠CBE = 100°.

Question 31:

In the given figure, if ∠ACB = 40 , then ∠AOB = ______ and ​∠OAB = _____________ 

Answer 31:

Given:
ACB = 40      ...(1)


We know, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
Thus, ∠AOB = 2∠ACB
⇒ ∠AOB = 2(40°)       (From (1))
⇒ ∠AOB = 80°           ...(2)


In ∆AOB,
OA = OB (radius)
OAB = OBA (angles opposite to equal sides are equal)         ...(3)


OAB + OBA + AOB = 180°  (angle sum property)
2∠OAB + 80° 180°      (From (2) and (3))
⇒ 2∠OAB 180° − 80°
⇒ 2∠OAB 100°
⇒ OAB = 50°


Hence, ∠AOB = 80° and ​∠OAB = 50°.

Question 32:

In the given figure, AOB is a diameter of the circle and CD , E are any three points to semi circle then ∠ACD +  ∠BED = _______ 

Answer 32:

Given:
AOB is a diameter of the circle


We know, the diameter subtends a right angle to any point on the circle.
∴ ∠AEB = 90°      ...(1)


Quadrilateral ACDE is a cyclic quadrilateral.

In a cyclic quadrilateral, the sum of opposite angles is 180.
Thus, ∠ACD + ∠DEA = 180°      ...(2)


Adding (1) and (2), we get
ACD + ∠DEA + AEB = 90° + 180°
⇒ ​∠ACD + ∠DEB = 270°


Hence, ∠ACD + ∠BED = 270°.

Question 33:

In the given figure, if ∠OAB = 30 and ∠OCB = 57 , then ∠BOC = _______ and ∠AOC = _________ .

Answer 33:

Given:
OAB = 30        ...(1)
OCB = 57        ...(2)


In ∆COB,
OC = OB (radius)
∴ OCB = OBC = 57∘ (angles opposite to equal sides are equal)         ...(3)


OCB + OBC + COB = 180°  (angle sum property)
⇒ 5757 COB = 180°      (From (3))
⇒ COB 180° − 114°
⇒ COB 66°                ...(4)


In ∆AOB,
OA = OB (radius)
∴ OAB = OBA = 30∘ (angles opposite to equal sides are equal)         ...(5)


OAB + OBA + AOB = 180°  (angle sum property)
⇒ 30 + 30 AOB = 180°      (From (5))
⇒ AOB 180° − 60°
⇒ AOB 120°         ...(6)


Now,
AOB AOC + COB
⇒ 120° = ∠AOC + 66°      (From (4) and (6))
⇒ ∠AOC = 120° − 66°
⇒ ∠AOC = 54°


Hence, ∠BOC = 66° and ∠AOC = 54°.

No comments:

Post a Comment

Home

Contact Form

Name

Email *

Message *