RD Sharma 2020 solution class 9 chapter 13 Quadrilaterals FBQS

FBQS

Page-13.71

Question 1:

Three angles of a quadrilateral are 75,90 and 75. The measure of the fourth angle is _____________ .

Answer 1:

Let the measure of the fourth angle be x.

We have,
Sum of all the angles of a quadrilateral = 360°
⇒ 75° + 90° + 75° + x = 360°
⇒ 240° + x = 360°
​⇒ x = 360° − 240°
​⇒ x = 120°


Hence, the measure of the fourth angle is 120°.


Question 2:

Diagonals of a parallelogram ABCD intersect at O. If ∠AOB = 90° and ∠BDC = 40°, then ∠OAB is __________.

Answer 2:



Let ∠OAB be x.

Since, AB || DC
Therefore, ∠DBA = BDC = 40°

In ∆AOB,
OAB  + ∠ABD  + ∠AOB = 180°
⇒  x + 40° + 90° = 180°
x + 130° = 180°
x = 180° − 130°
x = 50°

Hence, ∠OAB is 50°.


Question 3:

The angle A, B, C and D of a quadrilateral are in the ratio 1 : 2 : 4 : 5. If bisectors of ∠C and ∠D meet of O, the ∠COD = __________.

Answer 3:

Let the angle A, B, C and D of a quadrilateral be x, 2x, 4x and 5x, respectively.

We have,
Sum of all the angles of a quadrilateral = 360°
⇒ x + 2x + 4x + 5x = 360°
⇒ 12x = 360°
​⇒ x = 30°

Thus, ∠A = 30°
B = 60°
C = 120°
D = 150°

Now, the bisectors of ∠and ∠D meet of O
Thus, in ∆COD,
12
DCO  + ∠COD  + 12ODC = 180°
⇒ 12 × 120° + ∠COD  + 12 × 150° = 180°
⇒ 60° + ∠COD  + 75° = 180°
⇒ 135° + ∠COD = 180°
⇒ ∠COD = 180° − 135°
⇒ ∠COD = 45°

Hence, ∠COD = 45°.


Question 4:

A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute angle between the diagonals is __________.

Answer 4:



In ∆AOB,
OAB  + ∠ABO  + ∠AOB = 180°
⇒ 25° + 25° + ∠AOB = 180°
⇒ ∠AOB + 50° = 180°
⇒ ∠AOB = 180° − 50°
⇒ ∠AOB = 130° which is an obtuse angle

Now,  ∠AOB + AOD = 180°    (angles on a straight line)
⇒ 130° AOD = 180°
⇒ ∠AOD = 180° − 130°
⇒ ∠AOD = 50° which is an acute angle

Hence, the acute angle between the diagonals is 50°.


Question 5:

ABCD is a rhombus such that ∠ACB = 40°. Then ∠ADB = _________.

Answer 5:

Let ∠ADB be x.

As we know, angles formed by the diagonals of a rhombus is 90°



In ∆BOC,
OBC  + ∠BCO  + ∠COB = 180°
⇒ ∠OBC  + 40° + 90° = 180°
⇒ ∠OBC + 130° = 180°
⇒ ∠OBC = 180° − 130°
⇒ ∠OBC = 50°

Since, AD || BC
Thus, ∠ADB = DBC     (alternate interior angles)
x = 50°

Hence, ∠ADB 50°.


Question 6:

If angles A, B, C and D of the quadrilateral ABCD, taken in order, are in the ratio 3 : 7 : 6 : 4, then ABCD is a _________.

Answer 6:

Let the angle A, B, C and D of a quadrilateral be 3x, 7x, 6x and 4x, respectively.

We have,
Sum of all the angles of a quadrilateral = 360°
⇒ 3x + 7x + 6x + 4x = 360°
⇒ 20x = 360°
​⇒ x = 18°

Thus, ∠A = 54°
B = 126°
C = 108°
D = 72°



Now,
BCE = 180° − 108° = 72° = ∠ADE
AD || BC

Hence, ABCD is a trapezium.


Question 7:

If the diagonals of a parallelogram ABCD are equal then ∠ABC = ___________.

Answer 7:

The diagonals of a parallelogram ABCD are equal
ABCD is a rectangle
⇒ ∠ABC = 90°

Hence, ∠ABC 90°.


Question 8:

Diagonals AC and BD of a parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, then AC = _________ and BD = __________.

Answer 8:

Given:
ABCD is a parallelogram
Diagonals AC and BD intersect each other at O.
OA 
= 3 cm and OD = 2 cm

As we know, diagonals of a parallelogram bisects each other.
Thus, AC = 2OA = 2× 3 = 6 cm
and BD = 2OD = 2× 2 = 4 cm

Hence, AC = 6 cm and BD = 4 cm.


Question 9:

ABCD is a trapezium in which AB || DC and ∠A = ∠B = 45°. Then, ∠C = ______ and ∠D = ______.

Answer 9:

Given:
ABCD is a trapezium
AB || DC
A = ∠B = 45°

Since, AB || DC
Thus, AD and BC are the transversals.
Therefore, sum of the interior angles must be equal to 180°.

A + D = 180°
⇒ 45° D = 180°
⇒ ∠D = 180° − 45°
⇒ ∠D = 135°

B + C = 180°
⇒ 45° C = 180°
⇒ ∠C = 180° − 45°
⇒ ∠C = 135°

Hence, ∠C = 135° and ∠D = 135°.


Question 10:

ABCD is a rhombus in which altitude from vertex D to side AB bisects AB. The measures of angles of the rhombus are ________.

Answer 10:

Given:
ABCD is a rhombus
Altitude from vertex to side AB bisects AB.

Let DE biescts AB.
⇒ AE = EB                                     ...(1)

In ∆ADE and  ∆BDE

DE = DE (Common side)
AED = ∠BED (Right angle)
AE = EB (from (1))

By SAS property,  ∆ADE ≅ ∆BDE

Thus, AD = BD (By C.P.C.T)          ...(2)

Since, sides of a rhombus are equal
Thus, AD = AB                                ...(3)

From (2) and (3)
AD = BD = AB 
Therefore, ADB is an equilateral triangle.

Hence, ∠A = 60°
A = ∠C = 60° (opposite angles of rhombus are equal)

Sum of adjacent angles of a rhombus is 180°
⇒ ∠A + ∠D = 180° and ∠C + = 180°
⇒ 60° + ∠D = 180° and 60° + = 180°
⇒ ∠D = 180° − 60° and ∠180° − 60°
⇒ ∠D = 120° and ∠120°

Hence, the measures of angles of the rhombus are 60°, 120°, 60° and 120°.


Question 11:

Diagonals of a quadrilateral ABCD bisect each other. If ∠A = 35°, then ∠B = _________.

Answer 11:

Given: Diagonals of a quadrilateral ABCD bisect each other

Since, the diagonals of a quadrilateral ABCD bisect each other
Therefore, It is a parallelogram

Sum of interior angles of a parallelogram is 180°
⇒ ∠A + ∠B = 180°
⇒ 35° + ∠B = 180°
⇒ ∠B = 180° − 35°
⇒ ∠B = 145°

Hence, ∠=  145°.


Question 12:

In ∆ABC, AB = 5 cm, BC = 8 cm and CA = 7 cm. If D and E are respectively the mid-points of AB and BC, then DE = __________.

Answer 12:

Given:
In ∆ABCAB = 5 cm, BC = 8 cm and CA = 7 cm
D and E are respectively the mid-points of AB and BC


Using mid-point theorem: The line segment joining the mid-points of two sides of a triangle is parallel to the third side and is equal to the half of it.

Therefore,
DE=12AC     =12×7     =3.5 cm


Hence, DE = 3.5 cm.


Question 13:

Opposite angles of a quadrilateral ABCD are equal. If AB = 4 cm, then CD = ___________.

Answer 13:

Given:
Opposite angles of a quadrilateral ABCD are equal
AB = 4 cm

If Opposite angles of a quadrilateral ABCD are equal, then ABCD is a parallelogram.
Thus, CD = AB = 4 cm

Hence, CD 4 cm.


Question 14:

The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32° and ∠AOB = 70°, then ∠DBC = _______.

Answer 14:

Given:
The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O
DAC = 32°
AOB = 70°




Let ∠DBC be x.

Since, AB || DC
Therefore, ∠DAC = ACB = 32°   (alternate angles)


Also, ∠AOB  + ∠BOC = 180° (angles on a straight line)
⇒ 70° + ∠BOC = 180°
⇒ ∠BOC = 180° − 70°
⇒ ∠BOC = 110°


In ∆COB,
OCB  + ∠CBO  + ∠BOC = 180°
⇒  32° + x + 110° = 180°
⇒ x + 142° = 180°
⇒ x = 180° − 142°
⇒ x = 38°

Hence, ∠DBC = 38°.


Question 15:

The quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS, taken  in order, is a rectangle, if diagonals of PQRS are ________.

Answer 15:

Given:
PQRS is a quadrilateral
The quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS, is a rectangle.
Let the rectangle be ABCD.



A is the mid-point of PQ, B is the mid-point of QRC is the mid-point of RS and D is the mid-point of PS.

Using mid-point theorem: The line segment joining the mid-points of two sides of a triangle is parallel to the third side and is equal to the half of it.

In ∆PQR,
AB || PR

and In ∆QRS,
BC || QS

Since, ABBC
Therefore, PRQS


Hence, the quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS, taken  in order, is a rectangle, if diagonals of PQRS are perpendicular.
Page-13.72

Question 16:

The quadrilateral formed joining the mid-points of the sides of quadrilaterals PQRS, taken in order, is a rhombus, if diagonals of PQRS are _____________.

Answer 16:

Given: 
PQRS is a quadrilateral
The quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS, is a rhombus.
Let the rhombus be ABCD.



A is the mid-point of PQB is the mid-point of QRC is the mid-point of RS and D is the mid-point of PS.

Using mid-point theorem: The line segment joining the mid-points of two sides of a triangle is parallel to the third side and is equal to the half of it.

In ∆PQR,
AB = 12PR

and In ∆QRS,
BC = 12QS

Since, AB = BC (sides of a rhombus are equal)
Therefore, 12PR = 12QS
⇒ PR = QS



Hence, the quadrilateral formed by joining the mid points of the sides of a quadrilateral PQRS, taken  in order, is rhombus, if diagonals of PQRS are equal.

Question 17:

The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, diagonals of ABCD are ___________ and _________.

Answer 17:

Given: 
ABCD is a quadrilateral
The quadrilateral formed by joining the mid points of the sides of a quadrilateral ABCD, is a square.
Let the square be PQRS.



P is the mid-point of ABQ is the mid-point of BCR is the mid-point of CD and S is the mid-point of AD.

Using mid-point theorem: The line segment joining the mid-points of two sides of a triangle is parallel to the third side and is equal to the half of it.

In ∆ABC,
PQ = 12AC

and In ∆BCD,
QR = 12BD

Since, PQ = QR (sides of a square are equal)
Therefore, 12AC = 12BD
⇒ AC = BC


Hence, the diagonals are equal.

In ∆ABC,
PQ || AC

and In ∆BCD,
QR || BD

Since, PQQR
Therefore, ACBD

Hence, the diagonals are perpendicular.

Hence, the figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, diagonals of ABCD are perpendicular and equal.

Question 18:

If bisectors of ∠A and ∠B of a quadrilateral ABCD intersect each other at P, of ∠B and ∠C at Q, of ∠C and ∠D at R and of ∠D and ∠A at S, then PQRS is a quadrilateral whose opposite angles are __________.

Answer 18:

Given: 
ABCD is a quadrilateral
bisectors of ∠and ∠intersect each other at P
bisectors of ∠and ∠intersect each other at Q
bisectors of ∠and ∠intersect each other at R
bisectors of ∠and ∠intersect each other at S

In ∆DAS,
ASD + SDA + DAS = 180° (angle sum property)
⇒ ASD + 12D + 12= 180°
⇒ ASD = 180° − 12D  12A

Also, PSR = ASD = 180° − 12 12A
⇒ PSR = 180° − 12 12     ...(1)

Similarly,
In ∆BQC,
BQC + QCB + CBQ = 180° (angle sum property)
⇒ BQC + 12C + 12= 180°
⇒ BQC = 180° − 12 12B

Also, PQR = BQC = 180° − 12 12B
⇒ PQR = 180° − 12 12     ...(2)

Adding (1) and (2), we get
PSR + PQR = 180° − 12 12A + 180° − 12 12B
                          = 360° − 12(∠D + A + C + B)
                          = 360° − 12(360°)
                          = 360° − 180°​
                          = 180°

Since, sum of angles of a quadrilateral is 360°
Therefore, ∠PSR + PQR + QRS + QPS = 360°
⇒ QRS + QPS = 180°

Hence, the sum of the opposite angles of the quadrilateral PQRS is 180°.

Hence, PQRS is a quadrilateral whose opposite angles are supplementary.

Question 19:

If APB and CQD are two parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form a ____________.

Answer 19:

Given: 
APB and CQD are two parallel lines

Let the bisectors of the angle APQ and CQP intersects at the point R and the bisectors of the angle BPQ and PQD intersects at the point S.

Join PR, RQ, QS and SP as shown in the figure.



APB || CQD
⇒ APQ = ∠PQD (alternate angles)
2∠RPQ = 2∠PQS
⇒ 
RPQ = ∠PQS
⇒  RP || SQ
      ...(1)

Similarly,
APB || CQD
⇒ BPQ = ∠PQC (alternate angles)
⇒ 2∠SPQ = 2∠PQR
⇒ 
SPQ = ∠PQR
​⇒  RQ || SP
      ...(2)

From (1) and (2),
PSQR is a parallelogram,

Also, CQP + PQD = 180° (angles on a straight line)
2∠RQP + 2∠PQS = 180°
⇒ RQP + PQS = 90°
⇒ RQS = 90°

Therefore, PSQR is a rectangle.

Hence, if APB and CQD are two parallel lines, then the bisectors of the angles APQBPQCQP and PQD form a rectangle.

Question 20:

D and E are the mid-points of the sides AB and AC of ∆ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is a ____________.

Answer 20:

Given: 
and E are the mid-points of the sides AB and AC of ∆ABC.
O
 is any point on side BC
P
 and Q are the mid-points of OB and OC respectively.



Using mid-point theorem: The line segment joining the mid-points of two sides of a triangle is parallel to the third side and is equal to the half of it.

In ∆ABC,
DE || BC || PQ        ...(1) 
DE = 12BC
⇒ DE = 12(BP + PO + OQ + QC)
⇒ DE = 12(2OP + 2OQ)
⇒ DE = OP + OQ
⇒ DE
 = PQ             ...(2)

In ∆AOB,
DP || AO                  ...(3) 
DP = 12AO             ...(4)


In ∆AOC,
EQ || AO                  ...(5) 
EQ = 12AO             ...(6)

From (3) and (5),
DP || EQ

From (4) and (6),
DP = EQ

Thus, DE || PQ and DP || EQ
DP = EQ
and DE = PQ

Hence, DEQP is a parallelogram.

Question 21:

When all the sides of a quadrilateral are equal, then it is either a ____________or a _____________.

Answer 21:

All the sides of a square or a rhombus are equal.

Hence, when all the sides of a quadrilateral are equal, then it is either square or a rhombus.

Question 22:

The bisectors of two adjacent sides of a parallelogram ABCD meet at a point P inside the parallelogram. The angle made by these bisectors at point P is ____________.

Answer 22:

Given: 
ABCD is a parallelogram
Bisectors of ∠and ∠intersect each other at P


A + B = 180°      (interior angles)
⇒ 12A + 12= 12(180°)
⇒ PAB + PBA = 90°      ....(1)

Now, in ∆APB
PAB + PBA + APB = 180° (angle sum property)
⇒ 90°APB = 180°         (From (1))
⇒ APB = 180° − 90°
⇒ APB = 90°


Hence, the angle made by these bisectors at point P is 90°.

Question 23:

In the given figure, PQRS is a rhombus. If ∠OPQ = 35°, then ∠ORS + ∠OQP = ____________.

Answer 23:

Given: 
PQRS is a rhombus
OPQ = 35°


PQRS is a rhombus
PQ || RS
OPQ = ORS       (alternate angles)
⇒ ORS = 35°      ....(1)

We know, diagonals of a rhombus intersect at right angle
∴ ∠POQ = 90°      ....(2)

Now, in ∆OPQ
OPQ + POQ + OQP = 180° (angle sum property)
⇒ 35° + 90° + ∠OQP = 180°
125° + ∠OQP = 180°
⇒ OQP = 180° − 125°
⇒ OQP = 55°      ....(3)

Adding (1) and (3), we get
ORS + OQP = 35° + 55° = 90°


Hence, ∠ORS + ∠OQP =  90°.

Question 24:

In the given figure, ABC is an isosceles triangle in which AB = AC. AEDC is a parallelogram. If ∠CDF = 70° and ∠BFE = 100°, then ∠FBA = ____________.

Answer 24:

Given: 
ABC is an isosceles triangle
AB AC
AEDC is a parallelogram
CDF = 70°
BFE = 100°


AEDC is a parallelogram
ACD + CDE = 180°     (interior angles)
⇒ ACD + 70° = 180°
⇒ ACD = 180° − 70°
⇒ ACD = 110°      ....(1)


Now, ∠ACD + ACB = 180° (angles on a straight line)
⇒ 110° ACB = 180°
 ACB = 180° − 110°
 ACB = 70°       ....(2)

Also, ∠BFE + BFD = 180° (angles on a straight line)
⇒ 100° BFD = 180°
 BFD = 180° − 100°
 BFD = 80°       ....(3)


Now, in ∆BFD
FBD + BDF + BFD = 180° (angle sum property)
⇒ FBD + 70° + 80° = 180°
⇒ FBD + 150° = 180°
⇒ FBD = 180° − 150°
⇒ FBD = 30°      ....(4)

Since, ABC is an isosceles triangle with AB AC
Thus, ∠ABC = ACB = 70° (From (2))

ABC = ∠ABF + ∠FBD
⇒  
70° = ∠ABF + 30°
⇒  ABF = 70° − 30°
⇒  ABF = 40°


Hence, ∠FBA = 40°.

No comments:

Post a Comment

Contact Form

Name

Email *

Message *